You are viewing a single comment's thread. Return to all comments →
import numpy as np from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression f, n = map(int, input().strip().split()) x_observations = []; y_amount = [] for _ in range(n): l = list(map(float, input().strip().split())) x_observations.append(l[0:-1]) y_amount.append(l[-1]) poly_features = PolynomialFeatures(degree=3) X_poly = poly_features.fit_transform(np.array(x_observations)) model = LinearRegression() model.fit(X_poly, np.array(y_amount)) #result t = int(input().strip()) for _ in range(t): l = poly_features.fit_transform(np.array(list(map(float, input().strip().split()))).reshape(1, -1)) print( round(( model.predict(l) )[0],2))
Seems like cookies are disabled on this browser, please enable them to open this website
Polynomial Regression: Office Prices
You are viewing a single comment's thread. Return to all comments →