Sort by

recency

|

89 Discussions

|

  • + 0 comments
    # Enter your code here. Read input from STDIN. Print output to STDOUT
    
    import numpy as np 
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.linear_model import LinearRegression
    
    
    F, N = map(int, input().split())
    
    data = [list(map(float, input().split())) for i in range(N)]
    
    data = np.array(data)
    
    X_train, y_train = data[:, :-1], data[:, -1]
    
    T = int(input())
    
    X_test = [list(map(float, input().split())) for i in range(T)]
    
    X_test = np.array(X_test)
    
    degree = 3
    
    poly = PolynomialFeatures(degree)
    
    X_train_poly = poly.fit_transform(X_train)
    X_test_poly = poly.transform(X_test)
    
    model = LinearRegression()
    model.fit(X_train_poly, y_train)
    
    predictions = model.predict(X_test_poly)
    
    for p in predictions:
        print(round(p, 2))
    
  • + 0 comments

    It’s fascinating to see how they work together to solve complex problems! Sky1 exchange

  • + 0 comments

    Florida Public Adjuster For residents in Florida, a trusted ally is essential. Hire a reliable Florida Public Adjuster to handle your insurance claims efficiently and fight for your rights.

  • + 0 comments

    Best hair dryer ionic https://www.laifentech.com/pages/best-ionic-hair-dryer

  • + 0 comments
    import numpy as np 
    from sklearn.preprocessing import PolynomialFeatures 
    from sklearn.linear_model import LinearRegression
    
    f, n = map(int, input().strip().split())
        
    x_observations = [];
    y_amount = []
    for _ in range(n):
        l = list(map(float, input().strip().split()))
        x_observations.append(l[0:-1])
        y_amount.append(l[-1])
    
    poly_features = PolynomialFeatures(degree=3)
    X_poly = poly_features.fit_transform(np.array(x_observations))
    
    model = LinearRegression()
    model.fit(X_poly, np.array(y_amount))
    
    #result
    t = int(input().strip())
    for _ in range(t):
        l = poly_features.fit_transform(np.array(list(map(float, input().strip().split()))).reshape(1, -1))
        print( round(( model.predict(l) )[0],2))