We use cookies to ensure you have the best browsing experience on our website. Please read our cookie policy for more information about how we use cookies.
void solve()
{
int n = ni(), m = ni(), K = ni();
int[] f = na(n);
for(int i = 0;i < n;i++)f[i]--;
long[] ps = new long[m];
for(int i = 0;i < m;i++)ps[i] = nl();
int mod = 998244353;
// tr("phase 0");
long[] made = make(ps, K, n+1, 1);
int H = (int)Math.sqrt(n)*8; // naive height limit
int B = (int)Math.sqrt(n)*8; // cycle split period
SplitResult sres = split(f);
int[] tclus = new int[n];
Arrays.fill(tclus, -1);
for(int i = n-1;i >= 0;i--){
int cur = sres.ord[i];
if(sres.incycle[cur]){
tclus[cur] = cur;
}else{
tclus[cur] = tclus[f[cur]];
}
}
// small
for(int i = 0;i < n;i++){
if(marked[i] == 0){
for(int j = i;j != -1 && marked[j] != 1;j = par[j]){
ret[j] += di[dep[i]-dep[j]];
}
}
}
for(int i = 0;i < n;i++){
ret[i] %= mod;
}
return ret;
}
void collect(int cur, int par, int[][] g, int[] dep, int[] fdep)
{
fdep[dep[cur]]++;
for(int e : g[cur]){
if(e != par)collect(e, cur, g, dep, fdep);
}
}
// library
public static int[][] parents3(int[][] g, int root) {
int n = g.length;
int[] par = new int[n];
Arrays.fill(par, -1);
int[] depth = new int[n];
depth[0] = 0;
int[] q = new int[n];
q[0] = root;
for (int p = 0, r = 1; p < r; p++) {
int cur = q[p];
for (int nex : g[cur]) {
if (par[cur] != nex) {
q[r++] = nex;
par[nex] = cur;
depth[nex] = depth[cur] + 1;
}
}
}
return new int[][] { par, q, depth };
}
public static final int[] NTTPrimes = {1053818881, 1051721729, 1045430273, 1012924417, 1007681537, 1004535809, 998244353, 985661441, 976224257, 975175681};
public static final int[] NTTPrimitiveRoots = {7, 6, 3, 5, 3, 3, 3, 3, 3, 17};
// public static final int[] NTTPrimes = {1012924417, 1004535809, 998244353, 985661441, 975175681, 962592769, 950009857, 943718401, 935329793, 924844033};
// public static final int[] NTTPrimitiveRoots = {5, 3, 3, 3, 17, 7, 7, 7, 3, 5};
static long[] inputed;
static long[] saved;
public static long[] convoluteSimply(long[] a, long[] b, int P, int g)
{
int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
long[] fa = nttmb(a, m, false, P, g);
long[] fb = a == b ? fa : inputed != null ? inputed : nttmb(b, m, false, P, g);
saved = fb;
for(int i = 0;i < m;i++){
fa[i] = fa[i]*fb[i]%P;
}
return nttmb(fa, m, true, P, g);
}
public static long[] convolute(long[] a, long[] b)
{
int USE = 2;
int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
long[][] fs = new long[USE][];
for(int k = 0;k < USE;k++){
int P = NTTPrimes[k], g = NTTPrimitiveRoots[k];
long[] fa = nttmb(a, m, false, P, g);
long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
for(int i = 0;i < m;i++){
fa[i] = fa[i]*fb[i]%P;
}
fs[k] = nttmb(fa, m, true, P, g);
}
int[] mods = Arrays.copyOf(NTTPrimes, USE);
long[] gammas = garnerPrepare(mods);
int[] buf = new int[USE];
for(int i = 0;i < fs[0].length;i++){
for(int j = 0;j < USE;j++)buf[j] = (int)fs[j][i];
long[] res = garnerBatch(buf, mods, gammas);
long ret = 0;
for(int j = res.length-1;j >= 0;j--)ret = ret * mods[j] + res[j];
fs[0][i] = ret;
}
return fs[0];
}
public static long[] convolute(long[] a, long[] b, int USE, int mod)
{
int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
long[][] fs = new long[USE][];
for(int k = 0;k < USE;k++){
int P = NTTPrimes[k], g = NTTPrimitiveRoots[k];
long[] fa = nttmb(a, m, false, P, g);
long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
for(int i = 0;i < m;i++){
fa[i] = fa[i]*fb[i]%P;
}
fs[k] = nttmb(fa, m, true, P, g);
}
int[] mods = Arrays.copyOf(NTTPrimes, USE);
long[] gammas = garnerPrepare(mods);
int[] buf = new int[USE];
for(int i = 0;i < fs[0].length;i++){
for(int j = 0;j < USE;j++)buf[j] = (int)fs[j][i];
long[] res = garnerBatch(buf, mods, gammas);
long ret = 0;
for(int j = res.length-1;j >= 0;j--)ret = (ret * mods[j] + res[j]) % mod;
fs[0][i] = ret;
}
return fs[0];
}
// static int[] wws = new int[270000]; // outer faster
// Modifed Montgomery + Barrett
private static long[] nttmb(long[] src, int n, boolean inverse, int P, int g)
{
long[] dst = Arrays.copyOf(src, n);
int h = Integer.numberOfTrailingZeros(n);
long K = Integer.highestOneBit(P)<<1;
int H = Long.numberOfTrailingZeros(K)*2;
long M = K*K/P;
int[] wws = new int[1<<h-1];
long dw = inverse ? pow(g, P-1-(P-1)/n, P) : pow(g, (P-1)/n, P);
long w = (1L<<32)%P;
for(int k = 0;k < 1<<h-1;k++){
wws[k] = (int)w;
w = modh(w*dw, M, H, P);
}
long J = invl(P, 1L<<32);
for(int i = 0;i < h;i++){
for(int j = 0;j < 1<<i;j++){
for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){
long u = (dst[s] - dst[t] + 2*P)*wws[k];
dst[s] += dst[t];
if(dst[s] >= 2*P)dst[s] -= 2*P;
// long Q = (u&(1L<<32)-1)*J&(1L<<32)-1;
long Q = (u<<32)*J>>>32;
dst[t] = (u>>>32)-(Q*P>>>32)+P;
}
}
if(i < h-1){
for(int k = 0;k < 1<= P)dst[i] -= P;
}
for(int i = 0;i < n;i++){
int rev = Integer.reverse(i)>>>-h;
if(i < rev){
long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d;
}
}
if(inverse){
long in = invl(n, P);
for(int i = 0;i < n;i++)dst[i] = modh(dst[i]*in, M, H, P);
}
return dst;
}
// Modified Shoup + Barrett
private static long[] nttsb(long[] src, int n, boolean inverse, int P, int g)
{
long[] dst = Arrays.copyOf(src, n);
int h = Integer.numberOfTrailingZeros(n);
long K = Integer.highestOneBit(P)<<1;
int H = Long.numberOfTrailingZeros(K)*2;
long M = K*K/P;
long dw = inverse ? pow(g, P-1-(P-1)/n, P) : pow(g, (P-1)/n, P);
long[] wws = new long[1<<h-1];
long[] ws = new long[1<<h-1];
long w = 1;
for(int k = 0;k < 1<<h-1;k++){
wws[k] = (w<<32)/P;
ws[k] = w;
w = modh(w*dw, M, H, P);
}
for(int i = 0;i < h;i++){
for(int j = 0;j < 1<<i;j++){
for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){
long ndsts = dst[s] + dst[t];
if(ndsts >= 2*P)ndsts -= 2*P;
long T = dst[s] - dst[t] + 2*P;
long Q = wws[k]*T>>>32;
dst[s] = ndsts;
dst[t] = ws[k]*T-Q*P&(1L<<32)-1;
}
}
// dw = dw * dw % P;
if(i < h-1){
for(int k = 0;k < 1<= P)dst[i] -= P;
}
for(int i = 0;i < n;i++){
int rev = Integer.reverse(i)>>>-h;
if(i < rev){
long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d;
}
}
if(inverse){
long in = invl(n, P);
for(int i = 0;i < n;i++){
dst[i] = modh(dst[i] * in, M, H, P);
}
}
return dst;
}
static final long mask = (1L<<31)-1;
public static long modh(long a, long M, int h, int mod)
{
long r = a-((M*(a&mask)>>>31)+M*(a>>>31)>>>h-31)*mod;
return r < mod ? r : r-mod;
}
private static long[] garnerPrepare(int[] m)
{
int n = m.length;
assert n == m.length;
if(n == 0)return new long[0];
long[] gamma = new long[n];
for(int k = 1;k < n;k++){
long prod = 1;
for(int i = 0;i < k;i++){
prod = prod * m[i] % m[k];
}
gamma[k] = invl(prod, m[k]);
}
return gamma;
}
private static long[] garnerBatch(int[] u, int[] m, long[] gamma)
{
int n = u.length;
assert n == m.length;
long[] v = new long[n];
v[0] = u[0];
for(int k = 1;k < n;k++){
long temp = v[k-1];
for(int j = k-2;j >= 0;j--){
temp = (temp * m[j] + v[j]) % m[k];
}
v[k] = (u[k] - temp) * gamma[k] % m[k];
if(v[k] < 0)v[k] += m[k];
}
return v;
}
private static long pow(long a, long n, long mod) {
// a %= mod;
long ret = 1;
int x = 63 - Long.numberOfLeadingZeros(n);
for (; x >= 0; x--) {
ret = ret * ret % mod;
if (n << 63 - x < 0)
ret = ret * a % mod;
}
return ret;
}
private static long invl(long a, long mod) {
long b = mod;
long p = 1, q = 0;
while (b > 0) {
long c = a / b;
long d;
d = a;
a = b;
b = d % b;
d = p;
p = q;
q = d - c * q;
}
return p < 0 ? p + mod : p;
}
public static int[][] parentToG(int[] par)
{
int n = par.length;
int[] ct = new int[n];
for(int i = 0;i < n;i++){
if(par[i] >= 0){
ct[i]++;
ct[par[i]]++;
}
}
int[][] g = new int[n][];
for(int i = 0;i < n;i++){
g[i] = new int[ct[i]];
}
for(int i = 0;i < n;i++){
if(par[i] >= 0){
g[par[i]][--ct[par[i]]] = i;
g[i][--ct[i]] = par[i];
}
}
return g;
}
public static int[][] makeBuckets(int[] a, int sup)
{
int n = a.length;
int[][] bucket = new int[sup+1][];
int[] bp = new int[sup+1];
for(int i = 0;i < n;i++)bp[a[i]]++;
for(int i = 0;i <= sup;i++)bucket[i] = new int[bp[i]];
for(int i = n-1;i >= 0;i--)bucket[a[i]][--bp[a[i]]] = i;
return bucket;
}
public static class SplitResult
{
public boolean[] incycle;
public int[] ord;
}
public static SplitResult split(int[] f)
{
int n = f.length;
boolean[] incycle = new boolean[n];
Arrays.fill(incycle, true);
int[] indeg = new int[n];
for(int i = 0;i < n;i++)indeg[f[i]]++;
int[] q = new int[n];
int qp = 0;
for(int i = 0;i < n;i++){
if(indeg[i] == 0)q[qp++] = i;
}
for(int r = 0;r < qp;r++){
int cur = q[r];
indeg[cur] = -9999999;
incycle[cur] = false;
int e = f[cur];
indeg[e]--;
if(indeg[e] == 0)q[qp++] = e;
}
for(int i = 0;i < n;i++){
if(indeg[i] == 1){
q[qp++] = i;
}
}
assert qp == n;
SplitResult ret = new SplitResult();
ret.incycle = incycle;
ret.ord = q;
return ret;
}
void run() throws Exception
{
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new G2().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); }
}
Cookie support is required to access HackerRank
Seems like cookies are disabled on this browser, please enable them to open this website
Definite Random Walks
You are viewing a single comment's thread. Return to all comments →
import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashMap; import java.util.InputMismatchException; import java.util.Map;
public class G2 { InputStream is; PrintWriter out; String INPUT = ""; // String INPUT = "7 3 1\r\n" + // "4 2 7 2 4 3 5 \r\n" + // "0 1 0 "; // String INPUT = "4 2 1\r\n" + // "1 4 2 3 \r\n" + // "748683265 249561089"; // 1 2->4->3->2 // String INPUT = "4 2 2\r\n" + // "2 3 1 3 \r\n" + // "0 1 "; // 1/4 1/4 1/2 // 1/2 1/4 1/4 // String INPUT = "3 1 2\r\n" + // "1 3 1 \r\n" + // "1 "; // String INPUT = "4 5 1\r\n" + // "2 3 2 4\r\n" + // "332748118 332748118 332748118 0 0";
// tr("phase 0"); long[] made = make(ps, K, n+1, 1);
// tr("phase 1"); long[] rets = new long[n]; int[][] maps = makeBuckets(tclus, n); for(int i = 0;i < n;i++){ if(maps[i].length > 0){ int[] map = maps[i]; int[] lpar = new int[map.length]; int p = 0; for(int x : maps[i]){ if(sres.incycle[x]){ lpar[p++] = -1; }else{ lpar[p++] = Arrays.binarySearch(map, f[x]); } } long[] res = solve(parentToG(lpar), lpar, made, H, Arrays.binarySearch(map, i)); for(int j = 0;j < res.length;j++){ if(!sres.incycle[map[j]]){ rets[map[j]] += res[j]; } } } } // tr("phase 2");
// tr("phase 3"); // for(int j = made.length-1-1;j >= 0;j--){ // made[j] += made[j+1]; // if(made[j] >= mod)made[j] -= mod; // }
// tr("phase 4");
// tr(g, root); // tr(marked);
// tr("fdep", fdep, marked); long[] ced = convoluteSimply(rfdep, Arrays.copyOf(di, lmaxdep+1), mod, 3); for(int j = i;j != -1;j = par[j]){ ret[j] += ced[lmaxdep-dep[j]]; } } }
// public static final int[] NTTPrimes = {1012924417, 1004535809, 998244353, 985661441, 975175681, 962592769, 950009857, 943718401, 935329793, 924844033}; // public static final int[] NTTPrimitiveRoots = {5, 3, 3, 3, 17, 7, 7, 7, 3, 5};
// long Q = (u&(1L<<32)-1)*J&(1L<<32)-1; long Q = (u<<32)*J>>>32; dst[t] = (u>>>32)-(Q*P>>>32)+P; } } if(i < h-1){ for(int k = 0;k < 1<= P)dst[i] -= P; } for(int i = 0;i < n;i++){ int rev = Integer.reverse(i)>>>-h; if(i < rev){ long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d; } }
// dw = dw * dw % P; if(i < h-1){ for(int k = 0;k < 1<= P)dst[i] -= P; } for(int i = 0;i < n;i++){ int rev = Integer.reverse(i)>>>-h; if(i < rev){ long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d; } }
}