We use cookies to ensure you have the best browsing experience on our website. Please read our cookie policy for more information about how we use cookies.
Definite Random Walks
Definite Random Walks
Sort by
recency
|
8 Discussions
|
Please Login in order to post a comment
Delve into the fascinating world of Definite Random Walks with our in-depth guide, designed to enhance your understanding of this mathematical concept. To support your studies, we’re offering branded notepads with every guide purchase. Use these notepads to jot down key insights, calculations, and notes as you explore the complexities of random walks. Enjoy practical and stylish tools to complement your learning experience with our expert guide."
Here is my solution in java, C++ HackerRank Definite Random Walks Solution
Here is the solution of Definite Random Walks Click Here
Here is problem solution - https://programs.programmingoneonone.com/2021/07/hackerrank-definite-random-walks-problem-solution.html
import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashMap; import java.util.InputMismatchException; import java.util.Map;
public class G2 { InputStream is; PrintWriter out; String INPUT = ""; // String INPUT = "7 3 1\r\n" + // "4 2 7 2 4 3 5 \r\n" + // "0 1 0 "; // String INPUT = "4 2 1\r\n" + // "1 4 2 3 \r\n" + // "748683265 249561089"; // 1 2->4->3->2 // String INPUT = "4 2 2\r\n" + // "2 3 1 3 \r\n" + // "0 1 "; // 1/4 1/4 1/2 // 1/2 1/4 1/4 // String INPUT = "3 1 2\r\n" + // "1 3 1 \r\n" + // "1 "; // String INPUT = "4 5 1\r\n" + // "2 3 2 4\r\n" + // "332748118 332748118 332748118 0 0";
// tr("phase 0"); long[] made = make(ps, K, n+1, 1);
// tr("phase 1"); long[] rets = new long[n]; int[][] maps = makeBuckets(tclus, n); for(int i = 0;i < n;i++){ if(maps[i].length > 0){ int[] map = maps[i]; int[] lpar = new int[map.length]; int p = 0; for(int x : maps[i]){ if(sres.incycle[x]){ lpar[p++] = -1; }else{ lpar[p++] = Arrays.binarySearch(map, f[x]); } } long[] res = solve(parentToG(lpar), lpar, made, H, Arrays.binarySearch(map, i)); for(int j = 0;j < res.length;j++){ if(!sres.incycle[map[j]]){ rets[map[j]] += res[j]; } } } } // tr("phase 2");
// tr("phase 3"); // for(int j = made.length-1-1;j >= 0;j--){ // made[j] += made[j+1]; // if(made[j] >= mod)made[j] -= mod; // }
// tr("phase 4");
// tr(g, root); // tr(marked);
// tr("fdep", fdep, marked); long[] ced = convoluteSimply(rfdep, Arrays.copyOf(di, lmaxdep+1), mod, 3); for(int j = i;j != -1;j = par[j]){ ret[j] += ced[lmaxdep-dep[j]]; } } }
// public static final int[] NTTPrimes = {1012924417, 1004535809, 998244353, 985661441, 975175681, 962592769, 950009857, 943718401, 935329793, 924844033}; // public static final int[] NTTPrimitiveRoots = {5, 3, 3, 3, 17, 7, 7, 7, 3, 5};
// long Q = (u&(1L<<32)-1)*J&(1L<<32)-1; long Q = (u<<32)*J>>>32; dst[t] = (u>>>32)-(Q*P>>>32)+P; } } if(i < h-1){ for(int k = 0;k < 1<= P)dst[i] -= P; } for(int i = 0;i < n;i++){ int rev = Integer.reverse(i)>>>-h; if(i < rev){ long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d; } }
// dw = dw * dw % P; if(i < h-1){ for(int k = 0;k < 1<= P)dst[i] -= P; } for(int i = 0;i < n;i++){ int rev = Integer.reverse(i)>>>-h; if(i < rev){ long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d; } }
}