We use cookies to ensure you have the best browsing experience on our website. Please read our cookie policy for more information about how we use cookies.
this is the happy_coder solution in python ,to those interested in the python version of the solution
importmathdefmain():numberOfTestCases=int(input())generatePrimes()foriinrange(numberOfTestCases):res=0n=int(input())forjinrange(2,n+1):ifprime[j]:diff=n-jifdiff%2==0andisPerfectSquare(diff//2):res+=1print(res)defisPerfectSquare(input):root=int(math.sqrt(input))returninput==root*rootdefgeneratePrimes():limit=1000000globalprimeprime=[False]*(limit+1)prime[2]=Trueprime[3]=Trueroot=int(math.ceil(math.sqrt(limit)))# Sieve of Atkin for prime number generationforxinrange(1,root):foryinrange(1,root):n=4*x*x+y*yifn<=limitand(n%12==1orn%12==5):prime[n]=notprime[n]n=3*x*x+y*yifn<=limitandn%12==7:prime[n]=notprime[n]n=3*x*x-y*yifx>yandn<=limitandn%12==11:prime[n]=notprime[n]foriinrange(5,root):ifprime[i]:forjinrange(i*i,limit,i*i):prime[j]=Falseif__name__=="__main__":main()
Cookie support is required to access HackerRank
Seems like cookies are disabled on this browser, please enable them to open this website
Project Euler #46: Goldbach's other conjecture
You are viewing a single comment's thread. Return to all comments →
this is the happy_coder solution in python ,to those interested in the python version of the solution