You are viewing a single comment's thread. Return to all comments →
Simple solution with interpolation
import pandas as pd N = int(input()) columns = input().split() df = pd.DataFrame(columns=columns) for i in range(N): df.loc[i, :] = input().split() df.tmax = pd.to_numeric(df.tmax, errors='coerce') df.tmin = pd.to_numeric(df.tmin, errors='coerce') tmax_missing = df.tmax.isna() tmin_missing = df.tmin.isna() tmax_interp = df.tmax.interpolate(method='cubic') tmin_interp = df.tmin.interpolate(method='cubic') for i in range(df.shape[0]): if tmax_missing[i]: print(tmax_interp[i]) if tmin_missing[i]: print(tmin_interp[i])
Seems like cookies are disabled on this browser, please enable them to open this website
Day 7: Temperature Predictions
You are viewing a single comment's thread. Return to all comments →
Simple solution with interpolation