You are viewing a single comment's thread. Return to all comments →
JS
function erf(x) { var a1 = 0.254829592; var a2 = -0.284496736; var a3 = 1.421413741; var a4 = -1.453152027; var a5 = 1.061405429; var p = 0.3275911; var sign = 1; if (x < 0) { sign = -1; } x = Math.abs(x); var t = 1.0 / (1.0 + p * x); var y = 1.0 - (((((a5 * t + a4) * t) + a3) * t + a2) * t + a1) * t * Math.exp(-x * x); return sign * y; } let value = input.split(/[ \n]/g); let hours = 0.5 * (1 + erf((parseFloat([value[2]]) - parseFloat(value[0])) / (parseFloat(value[1]) * Math.sqrt(2)))); let hour_lower = 0.5 * (1 + erf((parseFloat(value[3]) - parseFloat(value[0])) / (parseFloat(value[1]) * Math.sqrt(2)))); let hour_upper = 0.5 * (1 + erf((parseFloat(value[4]) - parseFloat(value[0])) / (parseFloat(value[1]) * Math.sqrt(2)))); console.log(hours.toFixed(3), "\n", (hour_upper - hour_lower).toFixed(3));
Seems like cookies are disabled on this browser, please enable them to open this website
Day 5: Normal Distribution I
You are viewing a single comment's thread. Return to all comments →
JS