Sort by

recency

|

14 Discussions

|

  • + 0 comments

    Answer:

    # Enter your code here. Read input from STDIN. Print output to STDOUT
    import math
    def get_function(x):
        mu = 70
        sig = 10
        gaussian_func = (1 / (sig * math.sqrt(2 * math.pi))) * math.exp(-((x - mu) ** 2) / (2 * sig ** 2))
        return gaussian_func
    
    start_value = 20
    end_value = 120
    step = 0.0001
    
    x = [start_value + i * step for i in range(int((end_value - start_value) / step) + 1)]
    y0 = 0
    y1 = 0
    y2 = 0
    y3 = 0
    
    for i in range(len(x)):
        y0 += get_function(x[i]) * step
        if x[i] > 80:
            y1 += get_function(x[i]) * step
    
        if x[i] >= 60:
            y2 += get_function(x[i]) * step
    
        if x[i] < 60:
            y3 += get_function(x[i]) * step
    
    y1 = y1 * 100 / y0
    y2 = y2 * 100 / y0
    y3 = y3 * 100 / y0
    
    result1 = round(y1, 2)
    result2 = round(y2, 2)
    result3 = round(y3, 2)
    
    print(str(result1))
    print(str(result2))
    print(str(result3))
    
  • + 0 comments

    from math import exp, factorial, pi, erf

    Cumulative Probability

    Probility that in a normal distribution the value is less than x.

    def CDF(x, mu, std): return 0.5*(1+erf((x-mu)/(std*((2**0.5)))))

  • + 0 comments

    Python code I used successfully:

    from scipy.stats import norm
    a=100*(1-norm.cdf(80, loc=70, scale=10))
    b=100*norm.sf(60, loc=70, scale=10)
    c=100*norm.cdf(60, loc=70, scale=10)
    
    print "%.2f" %a
    print "%.2f" %b
    print "%.2f" %c
    
  • + 0 comments

    is thr ny negative value for (b)part??

  • + 0 comments

    You have to laugh a little... especially after carefully reading the problem statement:

    If we can approximate the distribution of these grades by a normal distribution, what percent of the students ...

    The Devil Is In The Details. Calculate to four decimal places (what is typically found in printed tables).. then MULTIPLY by 100 to get two digits to the left and two digits to the right of the decimal point. Namely, the PERCENTAGE value.