Sort by

recency

|

27 Discussions

|

  • + 1 comment

    How could the editorial solve the problem with cities={2, 3} and roads={{1, 2, 1}, {1, 3, 3}, {2, 4, 2}, {3, 4, 4}}? It's a 4-node graph connected in a circle. The editorial would return 20-9=11 instead of the expected result of 4?

  • + 0 comments

    Java solution. First, remove outer, non-letter cities (will never be visited). Then, from the (new) outer letter cities, go inward until you reach an intersection city (3 or more edges) and calculate the minimum and maximum subtree value. You can consider a 'minimum' subtree is where you start or end a path at that subtree. A maximum subtree will double value of all "lines" in the subtree. Eventually, you will reach an inner city in which all subtrees are calculated. From there you can calculate an intersection's cities minimum path will add two minimum subtrees with the rest as maximum subtrees. Once you've reached the most inner intersection city, you can calculate it's minimum path and move back outerwards to calcuate the rest of the intersections minimum paths (with optimizations). One of the intersections will have the minimum path, and that's what you will return. Minimum is O(# cities), maximum is O(# cities + # edges).

    static int jeanisRoute(int[] k, int[][] roads) {
            int biggestCity = roads.length + 1;
            // Trivial Cases
            if (biggestCity == 2) {
                return roads[0][2];
            }
            if (biggestCity == 3 && k.length == 3 ) {
                int sum = 0;
                for (int i = 0; i < 2; i++) {
                    sum += roads[i][2];
                }
                return sum;
            }
            Set<Integer> letterCities = new HashSet<>();
            for (int i = 0; i < k.length; i++) {
                letterCities.add(k[i]);
            }
            Map<Integer,List<Integer>> adjList = new HashMap<>();
            Map<Edge,Integer> weights = new HashMap<>();
            // Create adjacency list
            for (int i = 1; i <= biggestCity; i++) {
                adjList.put(i, new ArrayList<>());
            }
            for (int i = 0; i < roads.length; i++) {
                int[] currRoad = roads[i];
                int vertex1 = currRoad[0];
                int vertex2 = currRoad[1];
                adjList.get(vertex1).add(vertex2);
                adjList.get(vertex2).add(vertex1);
                Edge newEdge = new Edge(vertex1,vertex2);
                weights.put(newEdge,currRoad[2]);
            }
            if (biggestCity == 3) {
                int sum = 0;
                for (int i = 0; i < k.length; i++) {
                    List<Integer> connected = adjList.get(k[i]);
                    if (connected.size() == 1) {
                        int connectedCity = connected.get(0);
                        Edge newEdge = new Edge(k[i],connectedCity);
                        if (letterCities.contains(connectedCity)) {
                            return weights.get(newEdge);
                        } else {
                            sum += weights.get(newEdge);
                        }
                    }
                }
                return sum;
            }
            int citiesLeft = biggestCity;
            Set<Integer> outerCities = new HashSet<>();
            
            // Remove non-letter cities that will never be visited (outer of graph)
            // Create set of "outer cities"
            for (int i = 1; i <= biggestCity; i++) {
                List<Integer> connectedCities = adjList.get(i);
                if (connectedCities.size() != 1) {
                    continue;
                }
                if (letterCities.contains(i)) {
                    outerCities.add(i);
                } else { // Current City will never be visited
                    int currCity = i;
                    while (true) {
                        int adjCity = adjList.get(currCity).get(0);
                        adjList.get(currCity).remove(0);
                        List<Integer> connectedToAdj = adjList.get(adjCity);
                        for (int j = 0; j < connectedToAdj.size(); j++) {
                            if (connectedToAdj.get(j) == currCity) {
                                connectedToAdj.remove(j);
                                break;
                            }
                        }
                        citiesLeft--;
                        if (adjCity > i || connectedToAdj.size() != 1) {
                            break;
                        }
                        if (letterCities.contains(adjCity)) {
                            outerCities.add(adjCity);
                            break;
                        }
                        currCity = adjCity;
                    }
                }
            }
            
            // For every 'intersection' can choose two subtrees to be minimum and 
            // rest be maximum. Choose intersection that is minimal. 
            Map<Integer, int[][]> interToMinMaxSubtrees = new HashMap<>();
            Map<Integer, Integer> interMaxTotal = new HashMap<>();
            Map<Integer, int[]> interDiffMaxMin = new HashMap<>();
            Map<Integer, Set<Integer>> interToVisitedEdges = new HashMap<>();
            Map<Integer, Integer> interNumTreesCalculated = new HashMap<>();
            int noIntersection = 0;
            Set<Integer> nextCities = new HashSet<>();
            // Start with Outer Cities to Intersection Cities
            for (int outer : outerCities) {
                System.out.println("Curr Outer: " + outer);
                citiesLeft--;
                int prevCity = outer;
                int currCity = adjList.get(outer).get(0);
                int currLen = weights.get(new Edge(prevCity,currCity));
                while (true) {
                    List<Integer> connectedToCurr = adjList.get(currCity);
                    int numConnected = connectedToCurr.size();
                    if (numConnected > 2) { // Found intersection city
                        // Find edge index it currently intersected with
                        int edgeIntersect = 0;
                        for (int i = 0; i < numConnected; i++) {
                            int connectedCity = connectedToCurr.get(i);
                            if (connectedCity == prevCity) {
                                edgeIntersect = i;
                                break;
                            }
                        }
                        // Update maps
                        interToVisitedEdges.computeIfAbsent(currCity, 
                        key -> new HashSet<>()).add(edgeIntersect);
                        
                        int[][] minMax = interToMinMaxSubtrees.computeIfAbsent(currCity, key ->
                        new int[numConnected][2]);
                        minMax[edgeIntersect][0] = currLen;
                        minMax[edgeIntersect][1] = 2*currLen; 
                        
                        interMaxTotal.put(currCity, 
                        interMaxTotal.getOrDefault(currCity, 0) + minMax[edgeIntersect][1]);
                        
                        int edgesSeen = interToVisitedEdges.get(currCity).size();
                        interNumTreesCalculated.put(currCity, edgesSeen);
                        
                        interDiffMaxMin.computeIfAbsent(currCity, 
                        key -> new int[2]);
                        if (edgesSeen == numConnected - 1) {
                            nextCities.add(currCity);
                        }
                        int[] currLargest = interDiffMaxMin.get(currCity);
                        if (currLen < currLargest[0]) {
                            break;
                        }
                        if (currLen > currLargest[1]) {
                            currLargest[0] = currLargest[1];
                            currLargest[1] = currLen;
                        } else {
                            currLargest[0] = currLen;
                        }
                        break;
                    }
                    // This city is part of a 'line'
                    if (numConnected == 2) {
                        citiesLeft--;
                        int nextCity = connectedToCurr.get(0) == prevCity ? 
                        connectedToCurr.get(1) : connectedToCurr.get(0);
                        currLen += weights.get(new Edge(currCity, nextCity));
                        prevCity = currCity;
                        currCity = nextCity;
                        continue;
                    }
                    // Went from outer city to outer city, no intersections
                    noIntersection = currLen;
                    break;
                }
                if (noIntersection > 0) {
                    return noIntersection;
                }
            }
            // Only one intersection
            if (citiesLeft == 1) {
                int intersection = (int) interMaxTotal.keySet().toArray()[0];
                int[] largestSubTrees = interDiffMaxMin.get(intersection);
                int result = interMaxTotal.get(intersection) - 
                largestSubTrees[0] - largestSubTrees[1];
                return result;
            }
            Queue<Integer> toCalculate = new LinkedList<>();
            Map<Integer,int[][]> interToInterCityAndLen = new HashMap<>();
            
            int totalMax = 0;
            boolean[] calculated = new boolean[biggestCity];
            while (true) {
                Set<Integer> newCities = new HashSet<>();
                for (int inter : nextCities) {
                    List<Integer> connectedToInter = adjList.get(inter);
                    Set<Integer> edgesVisited = interToVisitedEdges.get(inter);
                    if (edgesVisited.size() == connectedToInter.size()) {
                        continue;
                    }
                    int prevCity = inter;
                    int lineStartIdx = 0;
                    int currCity = 0;
                    for (int i = 0; i < connectedToInter.size(); i++) {
                        if (!edgesVisited.contains(i)) {
                            currCity = connectedToInter.get(i);
                            lineStartIdx = i;
                            break;
                        }
                    }
                    
                    // If intersection to intersection already calculated
                    if (interToInterCityAndLen.get(inter) != null && interToInterCityAndLen.get(inter)[lineStartIdx][0] != 0) {
                        continue;
                    }
                    int currLen = weights.get(new Edge(prevCity,currCity));
                    while (true) {
                        List<Integer> connectedToCurr = adjList.get(currCity);
                        int numConnected = connectedToCurr.size();
                        
                        // This city is part of a 'line'
                        if (numConnected == 2) {
                            int nextCity = connectedToCurr.get(0) == prevCity ? 
                            connectedToCurr.get(1) : connectedToCurr.get(0);
                            currLen += weights.get(new Edge(currCity,nextCity));
                            prevCity = currCity;
                            currCity = nextCity;
                            continue;
                        }
                        // Found intersection
                        
                        // Find edge index that was intersected
                        int edgeIntersect = 0;
                        for (int i = 0; i < numConnected; i++) {
                            int connectedCity = connectedToCurr.get(i);
                            if (connectedCity == prevCity) {
                                edgeIntersect = i;
                                break;
                            }
                        }
                        interToVisitedEdges.computeIfAbsent(currCity, 
                        key -> new HashSet<>()).add(edgeIntersect);
                        
                        // Update intersection connections
                        int[] connectCurrToInter = {currCity,edgeIntersect,currLen};
                        int[] connectInterToCurr = {inter,lineStartIdx,currLen};
                        interToInterCityAndLen.computeIfAbsent(currCity, 
                        key -> new int[numConnected][3])[edgeIntersect] = connectInterToCurr;
                        interToInterCityAndLen.computeIfAbsent(inter, 
                        key -> new int[numConnected][3])[lineStartIdx] = connectCurrToInter;
                        
                        // Find min and max of current subtree
                        int previousMax = interMaxTotal.get(inter);
                        int prevLargestSubTree = interDiffMaxMin.get(inter)[1];
                        int previousMin = interMaxTotal.get(inter) - prevLargestSubTree;
                        int currentMax =  2*currLen + previousMax;
                        int currentMin = previousMin + currLen;
                        int diffMaxMin = currentMax - currentMin;
                        
                        // Update maps
                        interMaxTotal.put(currCity, 
                        interMaxTotal.getOrDefault(currCity, 0) + currentMax);
                        
                        int minMax[][] = interToMinMaxSubtrees.computeIfAbsent(currCity ,
                        key -> new int[numConnected][2]);
                        minMax[edgeIntersect][0] = currentMin;
                        minMax[edgeIntersect][1] = currentMax;
                        
                        interNumTreesCalculated.put(currCity, 
                        interNumTreesCalculated.getOrDefault(currCity, 0) + 1);
                        interDiffMaxMin.computeIfAbsent(currCity, 
                        key -> new int[2]);
                        int[] currLargest = interDiffMaxMin.get(currCity);
                        if (diffMaxMin > currLargest[1]) {
                            currLargest[0] = currLargest[1];
                            currLargest[1] = diffMaxMin;
                        } else if (diffMaxMin > currLargest[0]) {
                            currLargest[0] = diffMaxMin;
                        }
                        int edgesSeen = interToVisitedEdges.get(currCity).size();
                        if (edgesSeen == numConnected - 1) {
                            newCities.add(currCity);
                        } else if (edgesSeen == numConnected) {
                            newCities.remove(currCity);
                            if (interNumTreesCalculated.get(currCity) == numConnected) {
                                totalMax = interMaxTotal.get(currCity);
                                toCalculate.add(currCity);
                            }
                        }
                        break;
                    } // while loop inner end
                } // for loop end
                if (newCities.isEmpty()) {
                    break;
                } 
                nextCities = newCities;
            }
            
            int minSeen = Integer.MAX_VALUE;
            // only visit intersections where all subtrees have been calculated
            while (!toCalculate.isEmpty()) {
                int currInter = toCalculate.poll();
                if (calculated[currInter - 1]) {
                    continue;
                }
                // Calculate minimum path for this city
                calculated[currInter - 1] = true;
                int[] currLargest = interDiffMaxMin.get(currInter);
                int result = totalMax - currLargest[1] - currLargest[0];
                if (result < minSeen) {
                    minSeen = result;
                }
                // Calculate subtree for neighboring city
                int[][] connectedToCurr = interToInterCityAndLen.get(currInter);
                for (int i = 0; i < connectedToCurr.length; i++) {
                    int connectedCity = connectedToCurr[i][0];
                    if (connectedCity == 0 || calculated[connectedCity - 1]) {
                        continue;
                    }
                    int numSubTreesTotal = adjList.get(connectedCity).size();
                    int numSubTreesCalculated = interNumTreesCalculated.get(connectedCity);
                    int treesLeft= numSubTreesTotal - numSubTreesCalculated;
                    if (treesLeft == 0) {
                        continue;
                    }
                    // Calculate subtree from connected to current
                    int connectedLen = connectedToCurr[i][2];
                    int[][] currMaxMin = interToMinMaxSubtrees.get(currInter);
                    int maxRemoved = currMaxMin[i][1];
                    int minRemoved = currMaxMin[i][0];
                    int diffRemoved = maxRemoved - minRemoved;
                    int connectedMaxSubTree = totalMax - maxRemoved + 2*connectedLen;
                    int connectedMinSubTree;
                    if (diffRemoved < currLargest[1]) {
                        connectedMinSubTree = connectedMaxSubTree - currLargest[1];
                    }
                    else  {
                        connectedMinSubTree= connectedMaxSubTree - currLargest[0];
                    }
                    connectedMinSubTree += connectedLen;
                    int connectedDiff = connectedMaxSubTree - connectedMinSubTree;
                    int[] largestDiffs = interDiffMaxMin.get(connectedCity);
                    if (connectedDiff > largestDiffs[1]) {
                        largestDiffs[0] = largestDiffs[1];
                        largestDiffs[1] = connectedDiff;
                    } else if (connectedDiff > largestDiffs[0]) {
                        largestDiffs[0] = connectedDiff;
                    }
                    // This city will never be the minimum
                    if (largestDiffs[1] + largestDiffs[0] <= currLargest[1] + currLargest[0]) {
                        continue;
                    }
                    // Update maps for connected
                    interNumTreesCalculated.put(connectedCity,++numSubTreesCalculated);
                    if (--treesLeft == 0) {
                        toCalculate.add(connectedCity);
                    } 
                    int subTreeIdx = connectedToCurr[i][1];
                    int[][] connectedMinMax = interToMinMaxSubtrees.get(connectedCity);
                    connectedMinMax[subTreeIdx][0] = connectedMinSubTree;
                    connectedMinMax[subTreeIdx][1] = connectedMaxSubTree;
                }
            }
            return minSeen;
        }
    
  • + 1 comment

    python3

    def jeanisRoute(n, cities, roads):
        """The strategy of this approach is to:
        1) Prune off any branches of the tree that aren't visited
        2) Note that to visit each remaining node and return to start
        has length = 2 * sum(all remaining edge weights)
        3) Since we need not return to start, the most by which we can
        reduce total length is the max distance b/w 2 nodes
        i.e. the tree's diameter."""
        
        # Make the adjacency list and sum (2x) total graph weight
        adj = {i: [] for i in range(1, n+1)}
        total = 0
        for u, v, w in roads:
            adj[u].append((v, w))
            adj[v].append((u, w))
            total += 2*w
        
        # Iteratively, prune leaves that are not visited (adjusting total)
        flag = True  # track if any changes made this pass
        non_dest = set(range(1, n+1)).difference({*cities})
        while flag:
            flag = False
            for u in non_dest:
                if len(adj[u]) == 1:
                    v, w = adj[u].pop()
                    adj[v].remove((u, w))
                    flag = True
                    total -= 2*w
                    
        # Compute the pruned tree's diameter by running DFS twice.
        # First time, start at any city and find the furthest leaf.
        # Second time, start at first endpoint. Result is the diameter
        u, d = dfs(cities[0], adj)
        v, diameter = dfs(u, adj)
        
        return total - diameter
            
    
    def dfs(start, adj):
        "Conduct DFS to find the node of max distance from node <start>"
        
        seen = set([start])
        queue = [(start, 0)]
        end, max_dist = start, 0
        
        while queue:
            curr, dist = queue.pop()
            for nxt, wt in adj[curr]:
                if nxt not in seen:
                    seen.add(nxt)
                    new_dist = dist + wt
                    queue.append((nxt, new_dist))
                    if new_dist > max_dist:
                        end, max_dist = nxt, new_dist
        
        return end, max_dist
    
  • + 0 comments

    how can we know which city is must delivered or not ?? The thing we could know is the number of letter.. isn't it??

  • + 1 comment

    Here is my solution in java, javascript, python, C, C++, Csharp HackerRank Jeanie’s Route Problem Solution