Find Angle MBC

Sort by

recency

|

847 Discussions

|

  • + 0 comments

    Here, angle MBC = angle MCB, because MBC is an isosceles triangle,

    So, tan MCB = AB / BC

    MCB = tan inverse MCB

    MBC = MCB (isosceles triangle)


    import math

    AB, BC = int(input()), int(input())

    tan_MCB = AB / BC

    MCB = math.degrees(math.atan(tan_MCB))

    MBC = MCB # because MBC == MCB (isosceles triangles)

    print(f"{round(MBC)}\u00B0")

  • + 0 comments

    what is chr(176)

  • + 0 comments

  • + 0 comments

    Guys in a copy pen solve the Question using simple geometry then you will find the angle to be arctan of height and base then just apply it:

    import math a=int(input()) b=int(input()) rad=math.atan(a/b) print(round(math.degrees(rad)),chr(176),sep="")

  • + 0 comments

    Using complex numbers:

    from cmath import phase
    from math import degrees
    if __name__ == "__main__":
        degree_sign = u'\N{DEGREE SIGN}'
        
        AB, BC = float(input().strip()), float(input().strip())
        AC = pow(AB*AB + BC*BC,.5)
        A = complex(0,AB)
        C = complex(BC,0)
        K = A+C
        M = K/2
        radian = phase(M)
        degree = round(degrees(radian))
        print(f"{degree}{degree_sign}")