You are viewing a single comment's thread. Return to all comments →
def determinant(A: list[list[int]]) -> int: return A[0][0]*A[1][1] - A[1][0]*A[0][1] def matrixSubtract(B, A): C = [[0, 0], [0, 0]] for i in range(len(B)): for j in range(len(B[0])): C[i][j] = B[i][j] - A[i][j] return C def scalarMultiply(A, k: int): Ak = [[0, 0], [0, 0]] for i in range(len(A)): for j in range(len(A[0])): Ak[i][j] = k*A[i][j] return Ak if __name__ == "__main__": A = [[1, 2], [2, 4]] I2 = [[1, 0], [0, 1]] # 2 x 2 identity matrix eigval = -10 lst_eigvals = [] while (eigval < 10): val = determinant(matrixSubtract(scalarMultiply(I2, eigval), A)) if (val == 0): # |lambdaI - A| = 0 lst_eigvals += [eigval] eigval += 1 print(*lst_eigvals, sep='\n')
Seems like cookies are disabled on this browser, please enable them to open this website
Eigenvalue of matrix #2
You are viewing a single comment's thread. Return to all comments →