Sort by

recency

|

8 Discussions

|

  • + 0 comments

    No gmp function available for PHP to solve this problem Hackerrank should enable gmp and BCMath functions on their servers

  • + 1 comment

    Here is my solution in java, C++ HackerRank Counting Road Networks Solution

  • + 1 comment

    Here is Counting road Networks problem solution - https://programs.programmingoneonone.com/2021/07/hackerrank-counting-road-networks-problem-solution.html

  • + 0 comments

    import java.io.ByteArrayInputStream;

    import java.io.IOException;

    import java.io.InputStream;

    import java.io.PrintWriter;

    import java.util.Arrays;

    import java.util.InputMismatchException;

    public class E2 { InputStream is; PrintWriter out; String INPUT = "";

    void solve()
    {
        int n = 100005;
        long[] a = new long[n];
        int mod = 663224321;
        for(int i = 0;i < n;i++){
            a[i] = pow(2, (long)i*(i-1)/2, mod);
    }
    
        int[][] fif = enumFIF(100005, mod);
        long[] ta = transformLogarithmically(a, fif);
        for(int Q = ni();Q > 0;Q--){
            out.println(ta[ni()]);
        }
    
    }
    
    public static int[][] enumFIF(int n, int mod) {
        int[] f = new int[n + 1];
        int[] invf = new int[n + 1];
        f[0] = 1;
        for (int i = 1; i <= n; i++) {
            f[i] = (int) ((long) f[i - 1] * i % mod);
        }
    
        long a = f[n];
        long b = mod;
        long p = 1, q = 0;
        while (b > 0) {
            long c = a / b;
            long d;
            d = a;
            a = b;
            b = d % b;
            d = p;
            p = q;
            q = d - c * q;
        }
    
        invf[n] = (int) (p < 0 ? p + mod : p);
        for (int i = n - 1; i >= 0; i--) {
            invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod);
        }
    
        return new int[][] { f, invf };
    }
    
    
    public static long pow(long a, long n, long mod) {
        //      a %= mod;
        long ret = 1;
        int x = 63 - Long.numberOfLeadingZeros(n);
        for (; x >= 0; x--) {
            ret = ret * ret % mod;
            if (n << 63 - x < 0)
                ret = ret * a % mod;
        }
    
        return ret;
    }
    
    public static int mod = 663224321;
    public static int G = 3;
    
    public static long[] mul(long[] a, long[] b)
    {
        return Arrays.copyOf(convoluteSimply(a, b, mod, G), a.length+b.length-1);
    }
    
    public static long[] mul(long[] a, long[] b, int lim)
    {
        return Arrays.copyOf(convoluteSimply(a, b, mod, G), lim);
    }
    
    public static long[] mulnaive(long[] a, long[] b)
    {
        long[] c = new long[a.length+b.length-1];
        long big = 8L*mod*mod;
        for(int i = 0;i < a.length;i++){
            for(int j = 0;j < b.length;j++){
                c[i+j] += a[i]*b[j];
                if(c[i+j] >= big)c[i+j] -= big;
            }
        }
        for(int i = 0;i < c.length;i++)c[i] %= mod;
        return c;
    }
    
    public static long[] mulnaive(long[] a, long[] b, int lim)
    {
        long[] c = new long[lim];
        long big = 8L*mod*mod;
        for(int i = 0;i < a.length;i++){
            for(int j = 0;j < b.length && i+j < lim;j++){
                c[i+j] += a[i]*b[j];
                if(c[i+j] >= big)c[i+j] -= big;
            }
        }
        for(int i = 0;i < c.length;i++)c[i] %= mod;
        return c;
    }
    
    public static long[] add(long[] a, long[] b)
    {
        long[] c = new long[Math.max(a.length, b.length)];
        for(int i = 0;i < a.length;i++)c[i] += a[i];
        for(int i = 0;i < b.length;i++)c[i] += b[i];
        for(int i = 0;i < c.length;i++)if(c[i] >= mod)c[i] -= mod;
        return c;
    }
    
    public static long[] add(long[] a, long[] b, int lim)
    {
        long[] c = new long[lim];
        for(int i = 0;i < a.length && i < lim;i++)c[i] += a[i];
        for(int i = 0;i < b.length && i < lim;i++)c[i] += b[i];
        for(int i = 0;i < c.length;i++)if(c[i] >= mod)c[i] -= mod;
        return c;
    }
    
    public static long[] sub(long[] a, long[] b)
    {
        long[] c = new long[Math.max(a.length, b.length)];
        for(int i = 0;i < a.length;i++)c[i] += a[i];
        for(int i = 0;i < b.length;i++)c[i] -= b[i];
        for(int i = 0;i < c.length;i++)if(c[i] < 0)c[i] += mod;
        return c;
    }
    
    public static long[] sub(long[] a, long[] b, int lim)
    {
        long[] c = new long[lim];
        for(int i = 0;i < a.length && i < lim;i++)c[i] += a[i];
        for(int i = 0;i < b.length && i < lim;i++)c[i] -= b[i];
        for(int i = 0;i < c.length;i++)if(c[i] < 0)c[i] += mod;
        return c;
    }
    
    // F_{t+1}(x) = -F_t(x)^2*P(x) + 2F_t(x)
    // if want p-destructive, comment out flipping p just before returning.
    public static long[] inv(long[] p)
    {
        int n = p.length;
        long[] f = {invl(p[0], mod)};
        for(int i = 0;i < p.length;i++){
            if(p[i] == 0)continue;
            p[i] = mod-p[i];
        }
        for(int i = 1;i < 2*n;i*=2){
            long[] f2 = mul(f, f, Math.min(n, 2*i));
            long[] f2p = mul(f2, Arrays.copyOf(p, i), Math.min(n, 2*i));
            for(int j = 0;j < f.length;j++){
                f2p[j] += 2L*f[j];
                if(f2p[j] >= mod)f2p[j] -= mod;
                if(f2p[j] >= mod)f2p[j] -= mod;
            }
            f = f2p;
        }
        for(int i = 0;i < p.length;i++){
            if(p[i] == 0)continue;
            p[i] = mod-p[i];
        }
        return f;
    }
    
    // differentiate    
    public static long[] d(long[] p)
    {
        long[] q = new long[p.length];
        for(int i = 0;i < p.length-1;i++){
            q[i] = p[i+1] * (i+1) % mod;
        }
        return q;
    }
    
    // integrate
    public static long[] i(long[] p)
    {
        long[] q = new long[p.length];
        for(int i = 0;i < p.length-1;i++){
            q[i+1] = p[i] * invl(i+1, mod) % mod;
        }
        return q;
    }
    
    // F_{t+1}(x) = F_t(x)-(ln F_t(x) - P(x)) * F_t(x)
    public static long[] exp(long[] p)
    {
        int n = p.length;
        long[] f = {p[0]};
        for(int i = 1;i < 2*n;i*=2){
            long[] ii = ln(f);
            long[] sub = sub(ii, p, Math.min(n, 2*i));
            if(--sub[0] < 0)sub[0] += mod;
            for(int j = 0;j < 2*i && j < n;j++){
                sub[j] = mod-sub[j];
                if(sub[j] == mod)sub[j] = 0;
            }
            f = mul(sub, f, Math.min(n, 2*i));
    

    // f = sub(f, mul(sub(ii, p, 2*i), f, 2*i)); } return f; }

    // \int f'(x)/f(x) dx
    public static long[] ln(long[] f)
    {
        long[] ret = i(mul(d(f), inv(f)));
        ret[0] = f[0];
        return ret;
    }
    
    // ln F(x) - k ln P(x) = 0
    public static long[] pow(long[] p, int K)
    {
        int n = p.length;
        long[] lnp = ln(p);
        for(int i = 1;i < lnp.length;i++)lnp[i] = lnp[i] * K % mod;
        lnp[0] = pow(p[0], K, mod); // go well for some reason
        return exp(Arrays.copyOf(lnp, n));
    }
    
    // destructive
    public static long[] divf(long[] a, int[][] fif)
    {
        for(int i = 0;i < a.length;i++)a[i] = a[i] * fif[1][i] % mod;
        return a;
    }
    
    // destructive
    public static long[] mulf(long[] a, int[][] fif)
    {
        for(int i = 0;i < a.length;i++)a[i] = a[i] * fif[0][i] % mod;
        return a;
    }
    
    public static long[] transformExponentially(long[] a, int[][] fif)
    {
        return mulf(exp(divf(Arrays.copyOf(a, a.length), fif)), fif);
    }
    
    public static long[] transformLogarithmically(long[] a, int[][] fif)
    {
        return mulf(Arrays.copyOf(ln(divf(Arrays.copyOf(a, a.length), fif)), a.length), fif);
    }
    
    public static long invl(long a, long mod) {
        long b = mod;
        long p = 1, q = 0;
        while (b > 0) {
            long c = a / b;
            long d;
            d = a;
            a = b;
            b = d % b;
            d = p;
            p = q;
            q = d - c * q;
        }
        return p < 0 ? p + mod : p;
    }
    
    public static long[] reverse(long[] p)
    {
        long[] ret = new long[p.length];
        for(int i = 0;i < p.length;i++){
            ret[i] = p[p.length-1-i];
        }
        return ret;
    }
    
    public static long[] reverse(long[] p, int lim)
    {
        long[] ret = new long[lim];
        for(int i = 0;i < lim && i < p.length;i++){
            ret[i] = p[p.length-1-i];
        }
        return ret;
    }
    
    // [quotient, remainder]
    // remainder can be empty.
    // @see http://www.dis.uniroma1.it/~sankowski/lecture4.pdf
    public static long[][] div(long[] p, long[] q)
    {
        if(p.length < q.length)return new long[][]{new long[0], Arrays.copyOf(p, p.length)};
        long[] rp = reverse(p, p.length-q.length+1);
        long[] rq = reverse(q, p.length-q.length+1);
        long[] rd = mul(rp, inv(rq), p.length-q.length+1);
        long[] d = reverse(rd, p.length-q.length+1);
        long[] r = sub(p, mul(d, q, q.length-1), q.length-1);
        return new long[][]{d, r};
    }
    
    public static long[] substitute(long[] p, long[] xs)
    {
        return descendProductTree(p, buildProductTree(xs));
    }
    
    public static long[][] buildProductTree(long[] xs)
    {
        int m = Integer.highestOneBit(xs.length)*4;
        long[][] ms = new long[m][];
        for(int i = 0;i < xs.length;i++){
            ms[m/2+i] = new long[]{mod-xs[i], 1};
        }
        for(int i = m/2-1;i >= 1;i--){
            if(ms[2*i] == null){
                ms[i] = null;
            }else if(ms[2*i+1] == null){
                ms[i] = ms[2*i];
            }else{
                ms[i] = mul(ms[2*i], ms[2*i+1]);
            }
        }
        return ms;
    }
    
    public static long[] descendProductTree(long[] p, long[][] pt)
    {
        long[] rets = new long[pt[1].length-1];
        dfs(p, pt, 1, rets);
        return rets;
    }
    
    private static void dfs(long[] p, long[][] pt, int cur, long[] rets)
    {
        if(pt[cur] == null)return;
        if(cur >= pt.length/2){
            rets[cur-pt.length/2] = p[0];
        }else{
            // F = q1X+r1
            // F = q2Y+r2
    
            if(p.length >= 1500){
                if(pt[2*cur+1] != null){
                    long[][] qr0 = div(p, pt[2*cur]);
                    dfs(qr0[1], pt, cur*2, rets);
                    long[][] qr1 = div(p, pt[2*cur+1]);
                    dfs(qr1[1], pt, cur*2+1, rets);
                }else if(pt[2*cur] != null){
                    long[] nex = cur == 1 ? div(p, pt[2*cur])[1] : p;
                    dfs(nex, pt, cur*2, rets);
                }
            }else{
                if(pt[2*cur+1] != null){
                    dfs(modnaive(p, pt[2*cur]), pt, cur*2, rets);
                    dfs(modnaive(p, pt[2*cur+1]), pt, cur*2+1, rets);
                }else if(pt[2*cur] != null){
                    long[] nex = cur == 1 ? modnaive(p, pt[2*cur]) : p;
                    dfs(nex, pt, cur*2, rets);
                }
            }
        }
    }
    
    
    public static long[][] divnaive(long[] a, long[] b)
    {
        int n = a.length, m = b.length;
        if(n-m+1 <= 0)return new long[][]{new long[0], Arrays.copyOf(a, n)};
        long[] r = Arrays.copyOf(a, n);
        long[] q = new long[n-m+1];
        long ib = invl(b[m-1], mod);
        for(int i = n-1;i >= m-1;i--){
            long x = ib * r[i] % mod;
            q[i-(m-1)] = x;
            for(int j = m-1;j >= 0;j--){
                r[i+j-(m-1)] -= b[j]*x;
                r[i+j-(m-1)] %= mod;
                if(r[i+j-(m-1)] < 0)r[i+j-(m-1)] += mod;
    

    // r[i+j-(m-1)] = modh(r[i+j-(m-1)]+(long)mod*mod - b[j]*x, MM, HH, mod); } } return new long[][]{q, Arrays.copyOf(r, m-1)}; }

    public static long[] modnaive(long[] a, long[] b)
    {
        int n = a.length, m = b.length;
        if(n-m+1 <= 0)return a;
        long[] r = Arrays.copyOf(a, n);
        long ib = invl(b[m-1], mod);
        for(int i = n-1;i >= m-1;i--){
            long x = ib * r[i] % mod;
            for(int j = m-1;j >= 0;j--){
                r[i+j-(m-1)] -= b[j]*x;
                r[i+j-(m-1)] %= mod;
                if(r[i+j-(m-1)] < 0)r[i+j-(m-1)] += mod;
    

    // r[i+j-(m-1)] = modh(r[i+j-(m-1)]+(long)mod*mod - b[j]*x, MM, HH, mod); } } return Arrays.copyOf(r, m-1); }

    public static final int[] NTTPrimes = {1053818881, 1051721729, 1045430273, 1012924417, 1007681537, 1004535809, 998244353, 985661441, 976224257, 975175681};
    public static final int[] NTTPrimitiveRoots = {7, 6, 3, 5, 3, 3, 3, 3, 3, 17};
    

    // public static final int[] NTTPrimes = {1012924417, 1004535809, 998244353, 985661441, 975175681, 962592769, 950009857, 943718401, 935329793, 924844033}; // public static final int[] NTTPrimitiveRoots = {5, 3, 3, 3, 17, 7, 7, 7, 3, 5};

    public static long[] convoluteSimply(long[] a, long[] b, int P, int g)
    {
        int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
        long[] fa = nttmb(a, m, false, P, g);
        long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
        for(int i = 0;i < m;i++){
            fa[i] = fa[i]*fb[i]%P;
        }
        return nttmb(fa, m, true, P, g);
    }
    
    public static long[] convolute(long[] a, long[] b)
    {
        int USE = 2;
        int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
        long[][] fs = new long[USE][];
        for(int k = 0;k < USE;k++){
            int P = NTTPrimes[k], g = NTTPrimitiveRoots[k];
            long[] fa = nttmb(a, m, false, P, g);
            long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
            for(int i = 0;i < m;i++){
                fa[i] = fa[i]*fb[i]%P;
            }
            fs[k] = nttmb(fa, m, true, P, g);
        }
    
        int[] mods = Arrays.copyOf(NTTPrimes, USE);
        long[] gammas = garnerPrepare(mods);
        int[] buf = new int[USE];
        for(int i = 0;i < fs[0].length;i++){
            for(int j = 0;j < USE;j++)buf[j] = (int)fs[j][i];
            long[] res = garnerBatch(buf, mods, gammas);
            long ret = 0;
            for(int j = res.length-1;j >= 0;j--)ret = ret * mods[j] + res[j];
            fs[0][i] = ret;
        }
        return fs[0];
    }
    
    public static long[] convolute(long[] a, long[] b, int USE, int mod)
    {
        int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
        long[][] fs = new long[USE][];
        for(int k = 0;k < USE;k++){
            int P = NTTPrimes[k], g = NTTPrimitiveRoots[k];
            long[] fa = nttmb(a, m, false, P, g);
            long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
            for(int i = 0;i < m;i++){
                fa[i] = fa[i]*fb[i]%P;
            }
            fs[k] = nttmb(fa, m, true, P, g);
        }
    
        int[] mods = Arrays.copyOf(NTTPrimes, USE);
        long[] gammas = garnerPrepare(mods);
        int[] buf = new int[USE];
        for(int i = 0;i < fs[0].length;i++){
            for(int j = 0;j < USE;j++)buf[j] = (int)fs[j][i];
            long[] res = garnerBatch(buf, mods, gammas);
            long ret = 0;
            for(int j = res.length-1;j >= 0;j--)ret = (ret * mods[j] + res[j]) % mod;
            fs[0][i] = ret;
        }
        return fs[0];
    }
    
    // static int[] wws = new int[270000]; // outer faster
    
    // Modifed Montgomery + Barrett
    private static long[] nttmb(long[] src, int n, boolean inverse, int P, int g)
    {
        long[] dst = Arrays.copyOf(src, n);
    
        int h = Integer.numberOfTrailingZeros(n);
        long K = Integer.highestOneBit(P)<<1;
        int H = Long.numberOfTrailingZeros(K)*2;
        long M = K*K/P;
    
        int[] wws = new int[1<<h-1];
        long dw = inverse ? pow(g, P-1-(P-1)/n, P) : pow(g, (P-1)/n, P);
        long w = (1L<<32)%P;
        for(int k = 0;k < 1<<h-1;k++){
            wws[k] = (int)w;
            w = modh(w*dw, M, H, P);
        }
        long J = invl(P, 1L<<32);
        for(int i = 0;i < h;i++){
            for(int j = 0;j < 1<<i;j++){
                for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){
                    long u = (dst[s] - dst[t] + 2*P)*wws[k];
                    dst[s] += dst[t];
                    if(dst[s] >= 2*P)dst[s] -= 2*P;
    

    // long Q = (u&(1L<<32)-1)*J&(1L<<32)-1; long Q = (u<<32)*J>>>32; dst[t] = (u>>>32)-(Q*P>>>32)+P; } } if(i < h-1){ for(int k = 0;k < 1<= P)dst[i] -= P; } for(int i = 0;i < n;i++){ int rev = Integer.reverse(i)>>>-h; if(i < rev){ long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d; } }

        if(inverse){
            long in = invl(n, P);
            for(int i = 0;i < n;i++)dst[i] = modh(dst[i]*in, M, H, P);
        }
    
        return dst;
    }
    
    static final long mask = (1L<<31)-1;
    
    public static long modh(long a, long M, int h, int mod)
    {
        long r = a-((M*(a&mask)>>>31)+M*(a>>>31)>>>h-31)*mod;
        return r < mod ? r : r-mod;
    }
    
    private static long[] garnerPrepare(int[] m)
    {
        int n = m.length;
        assert n == m.length;
        if(n == 0)return new long[0];
        long[] gamma = new long[n];
        for(int k = 1;k < n;k++){
            long prod = 1;
            for(int i = 0;i < k;i++){
                prod = prod * m[i] % m[k];
            }
            gamma[k] = invl(prod, m[k]);
        }
        return gamma;
    }
    
    private static long[] garnerBatch(int[] u, int[] m, long[] gamma)
    {
        int n = u.length;
        assert n == m.length;
        long[] v = new long[n];
        v[0] = u[0];
        for(int k = 1;k < n;k++){
            long temp = v[k-1];
            for(int j = k-2;j >= 0;j--){
                temp = (temp * m[j] + v[j]) % m[k];
            }
            v[k] = (u[k] - temp) * gamma[k] % m[k];
            if(v[k] < 0)v[k] += m[k];
        }
        return v;
    }
    
    void run() throws Exception
    {
        is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
        out = new PrintWriter(System.out);
    
        long s = System.currentTimeMillis();
        solve();
        out.flush();
        if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
    }
    
    public static void main(String[] args) throws Exception { new E2().run(); }
    
    private byte[] inbuf = new byte[1024];
    public int lenbuf = 0, ptrbuf = 0;
    
    private int readByte()
    {
        if(lenbuf == -1)throw new InputMismatchException();
        if(ptrbuf >= lenbuf){
            ptrbuf = 0;
            try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
            if(lenbuf <= 0)return -1;
        }
        return inbuf[ptrbuf++];
    }
    
    private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
    private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
    
    private double nd() { return Double.parseDouble(ns()); }
    private char nc() { return (char)skip(); }
    
    private String ns()
    {
        int b = skip();
        StringBuilder sb = new StringBuilder();
        while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
            sb.appendCodePoint(b);
            b = readByte();
        }
        return sb.toString();
    }
    
    private char[] ns(int n)
    {
        char[] buf = new char[n];
        int b = skip(), p = 0;
        while(p < n && !(isSpaceChar(b))){
            buf[p++] = (char)b;
            b = readByte();
        }
        return n == p ? buf : Arrays.copyOf(buf, p);
    }
    
    private char[][] nm(int n, int m)
    {
        char[][] map = new char[n][];
        for(int i = 0;i < n;i++)map[i] = ns(m);
        return map;
    }
    
    private int[] na(int n)
    {
        int[] a = new int[n];
        for(int i = 0;i < n;i++)a[i] = ni();
        return a;
    }
    
    private int ni()
    {
        int num = 0, b;
        boolean minus = false;
        while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
        if(b == '-'){
            minus = true;
            b = readByte();
        }
    
        while(true){
            if(b >= '0' && b <= '9'){
                num = num * 10 + (b - '0');
            }else{
                return minus ? -num : num;
            }
            b = readByte();
        }
    }
    
    private long nl()
    {
        long num = 0;
        int b;
        boolean minus = false;
        while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
        if(b == '-'){
            minus = true;
            b = readByte();
        }
    
        while(true){
            if(b >= '0' && b <= '9'){
                num = num * 10 + (b - '0');
            }else{
                return minus ? -num : num;
            }
            b = readByte();
        }
    }
    
    private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); }
    

    }

  • + 1 comment

    maaa chudalo mujhse ni hora