Sort by

recency

|

330 Discussions

|

  • + 0 comments

    from collections import deque

    def minimumMoves(grid, startX, startY, goalX, goalY): n = len(grid) directions = ( (-1, 0), (0, 1), (1, 0), (0, -1), ) queue = deque( [(startX, startY, 0)] ) visited = set( [(startX, startY)] )

    # BFS
    while queue:
        current_x, current_y, current_distance = queue.popleft()
    
        if (current_x, current_y) == (goalX, goalY):
            return current_distance
    
        # Visit current node neighbors
        for move_to_x, move_to_y in directions:
            next_x, next_y = current_x, current_y
    
            # Move until reaching grid's edge or facing an obstacle "X"
            while (
                0 <= next_x + move_to_x < n
                and 0 <= next_y + move_to_y < n
                and grid[next_x + move_to_x][next_y + move_to_y]
                != "X"
            ):
                next_x += move_to_x
                next_y += move_to_y
    
    
                if (next_x, next_y) == (goalX, goalY):
                    return current_distance + 1
    
            if (next_x, next_y) not in visited:
                visited.add((next_x, next_y))
                queue.append((next_x, next_y, current_distance + 1))
    
    return -1
    
  • + 0 comments

    simply O(n^3) algo

    void update(int I, int J, int i, int j, vector<vector<bool>>& visited, vector<vector<int>>& minPath, queue<pair<int, int>>& Q) {
        if (visited[i][j]) return;
        visited[i][j] = true;
        minPath[i][j] = minPath[I][J] + 1;
        Q.push(make_pair(i, j));
        return;
    }
    
    int minimumMoves(int n, vector<vector<char>> grid, int startX, int startY, int goalX, int goalY) {
        vector<vector<bool>> visited(n + 2, vector<bool>(n + 2));
        vector<vector<int>> minPath(n + 2, vector<int>(n + 2, -1));
        queue<pair<int, int>> Q;
        Q.push(make_pair(startX, startY));
        visited[startX][startY] = true;
        minPath[startX][startY] = 0;
        while (!Q.empty()) {
            int I = Q.front().first, J = Q.front().second;
            for (int i=1; I - i > 0; i++) {
                if (grid[I-i][J] == 'X') break;
                update(I, J, I-i, J, visited, minPath, Q);
            }
            for (int i=1; I + i < n+1; i++) {
                if (grid[I+i][J] == 'X') break;
                update(I, J, I+i, J, visited, minPath, Q);
            }
            for (int j=1; J - j > 0; j++) {
                if (grid[I][J-j] == 'X') break;
                update(I, J, I, J-j, visited, minPath, Q);
            }
            for (int j=1; J + j < n+1; j++) {
                if (grid[I][J+j] == 'X') break;
                update(I, J, I, J+j, visited, minPath, Q);
            }
            Q.pop();
        }
        return minPath[goalX][goalY];
    }
    
    int main()
    {
        int n, startX, startY, goalX, goalY;
        string s;
        cin >> n;
        vector<vector<char>> grid(n + 2, vector<char>(n + 2));
        for (int i = 1; i <= n; i++) {
            cin >> s;
            for (int j = 1; j <= n; j++) grid[i][j] = s[j - 1];
        }
        cin >> startX >> startY >> goalX >> goalY;
        cout << minimumMoves(n, grid, startX + 1, startY + 1, goalX + 1, goalY + 1);
    }
    
  • + 0 comments

    Python easy implementation using deque:

    import os from collections import deque

    def minimumMoves(grid, startX, startY, goalX, goalY): # Define the directions for up, down, left, right movements directions = [(1, 0), (-1, 0), (0, 1), (0, -1)]

    # Create a queue for BFS and enqueue the starting position with 0 moves
    queue = deque([(startX, startY, 0)])
    
    # Create a set to keep track of visited positions
    visited = set()
    visited.add((startX, startY))
    
    # Get the size of the grid
    n = len(grid)
    
    # Perform BFS
    while queue:
        x, y, moves = queue.popleft()
    
        # Check if we have reached the goal
        if (x, y) == (goalX, goalY):
            return moves
    
        # Try all 4 possible directions
        for dx, dy in directions:
            nx, ny = x, y
    
            # Move in the current direction until hitting a wall or boundary
            while 0 <= nx + dx < n and 0 <= ny + dy < n and grid[nx + dx][ny + dy] == '.':
                nx += dx
                ny += dy
    
                # If this new position has not been visited, add it to the queue
                if (nx, ny) not in visited:
                    queue.append((nx, ny, moves + 1))
                    visited.add((nx, ny))
    
    # If the goal is not reachable, return -1 (though in the problem it's guaranteed to be reachable)
    return -1
    

    if name == 'main': fptr = open(os.environ['OUTPUT_PATH'], 'w')

    n = int(input().strip())
    
    grid = []
    
    for _ in range(n):
        grid_item = input()
        grid.append(grid_item)
    
    first_multiple_input = input().rstrip().split()
    
    startX = int(first_multiple_input[0])
    
    startY = int(first_multiple_input[1])
    
    goalX = int(first_multiple_input[2])
    
    goalY = int(first_multiple_input[3])
    
    result = minimumMoves(grid, startX, startY, goalX, goalY)
    

    deque helps in improving time complexity to O(1) ... while append and pop the points/elements.

    fptr.write(str(result) + '\n')
    
    fptr.close()
    
  • + 1 comment
    from dataclasses import dataclass, field
    from typing import ClassVar
    from functools import cached_property
    from itertools import chain
    
    class GameSetup:
        goalX  = 1
        goalY = 2
        grid = ["...", ".X.",'...']
    
    
    @dataclass(eq=True, order=True)
    class Move(GameSetup):
        x: int = field(hash=True, compare=False)
        y: int = field(hash=True, compare=False)
        step:int  = field(default=0, hash=False, compare=True)
        cost:float = field(init=False, hash=False, compare=True)
    
        def __post_init__(self):
            self.cost = self.get_cost()
        
        def __hash__(self):
            return hash((self.x, self.y))
    
        @property
        def maxX(self):
            return len(GameSetup.grid)-1
        
        @property
        def maxY(self):
            return len(GameSetup.grid[0])-1
    
        def get_cost(self) -> float:
            if self.x > self.maxX or self.x < 0 or self.y > self.maxY or self.y < 0:
                scost = 1e9
            elif Move.grid[self.x][self.y] == 'X':
                scost = 1e9
            else:
                scost = (self.goalX-self.x) ** 2 + (self.goalY-self.y) ** 2
            return scost
            
        def all_moves(self):
            row = GameSetup.grid[self.x]
            col = ''.join([r[self.y] for r in GameSetup.grid])
            x_min = max(0, col.rfind('X', 0, self.x))
            xx = col.find('X', self.x)
            if xx == -1:
                xx = self.maxX
            x_max = min(self.maxX, xx)
            print(col, x_min, x_max)
            y_min = max(0, row.rfind('X', 0, self.y))
            yy = row.find('X', self.y)
            print(row, yy)
            if yy == -1:
                yy = self.maxY
            print(self.maxY, yy)
            y_max = min(self.maxY, yy)
            ret = []
            print(x_min, x_max, y_min, y_max)
    
            for y in chain(range(y_min, self.y), range(self.y+1, y_max+1)):
                ret.append(Move(self.x, y, self.step+1))
            for x in chain(range(x_min, self.x), range(self.x+1, x_max+1)):
                ret.append(Move(x, self.y, self.step+1))
            return re
    def minimumMoves(grid, startX, startY, goalX, goalY):
        # Write your code here
        GameSetup.goalX = goalX
        GameSetup.goalY = goalY
        GameSetup.grid = grid
        moves = [Move(startX, startY, 0)]
        processed = set()
        
        while moves:
            move = heapq.heappop(moves)
            #move = moves[-1]
            print(f"current_{move=}")
            processed.add(tuple((move.x, move.y)))
            startX = move.x
            startY = move.y
            step = move.step
            if (startX, startY) == (goalX, goalY):
                return step
            next_moves = move.all_moves()
            valid_moves = [m for m in next_moves if m.cost < 1e9 and tuple((m.x, m.y)) not in processed]
            #valid_moves = sorted(valid_moves, reverse=True)
            for v in valid_moves:
                processed.add((v.x, v.y))
            moves.extend(valid_moves)
            heapq.heapify(moves)
            print(f"{moves=}")
            print(f"{processed=}"
    
  • + 1 comment
    Java 8 Solution with comments, all code credits go to Artemis https://interviewnoodle.com/hackerrank-castle-on-the-grid-problem-solution-6314a877974d
    public static int minimumMoves(List<String> grid, int startX, int startY, int goalX, int goalY) {       
    				// We will assume the grid is filled and not empty
            // 1. Create a character matrix representing the SQUARE grid.
            int gridSize = grid.size();
            char[][] charGrid = new char[gridSize][gridSize];
            for (int i = 0; i < gridSize; i++) {
                for (int j = 0; j < gridSize; j++) {
                    charGrid[i][j] = grid.get(i).charAt(j);
                }
            }
    
    // 2. Implement BFS w/ a Queue. Point objects will be used to track valid cells.
            Queue<Point> queue = new LinkedList<>();
            // Create a "steps" matrix representing the steps to get to a cell in the grid.
            int[][] steps = new int[gridSize][gridSize];
            // Keep track of cells visited to avoid adding them to the Queue.
            boolean[][] visited = new boolean[gridSize][gridSize];
            // Add the starting point to the queue to start BFS.
            queue.add(new Point(startX, startY));
            visited[startX][startY] = true;
            
            while (!queue.isEmpty()) {
                Point current = queue.poll();
                // 3. We can move in 4 directions: Up (0), Right (1), Down (2), and Left (3).
                //    To represent these directions, refer to xMove and yMove.
                //    We will be adding to our queue the cells of each valid step in each 
                //    direction of our current cell.
                for (int i = 0; i < 4; i++) {
                    // Used to explore the "adjacent" cells a certain valid distance from 
                    // the current cell in each valid direction. 
                    int distance = 1;
                    // Check if the cell we are trying to "move" into is a valid cell.
                    // A valid cell is a cell that is not an obstacle (X), and within bounds.
                    while (isSafe(gridSize, current.x + xMove[i]*distance, current.y + 
                    yMove[i]*distance, charGrid) && !visited[current.x + xMove[i]*distance]
                    [current.y + yMove[i]*distance]) {
                        // Record the Point coordinates to be added into the queue.
                        int nextX = current.x + xMove[i]*distance;
                        int nextY = current.y + yMove[i]*distance;
                        visited[nextX][nextY] = true;
                        queue.add(new Point(nextX, nextY));
                        // Keep track of the "steps" taken to get to a cell.
                        steps[nextX][nextY] = steps[current.x][current.y] +1;
                        // Case where the point "adjacent" to current is the goal.
                        if (nextX == goalX && nextY == goalY) {
                            System.out.println(steps[nextX][nextY]);
                            return steps[nextX][nextY];
                        }
                        distance++;
                    }
                }
            }
            
            // By default, return -1, indicating that the grid was not valid.
            return -1;
        }
    		
     // Helper arrays used to define directions.
     // To move up (index 0): xMove is -1, yMove is 0.
     // To move right (index 1): xMove is 0, yMove is 1.
     // To move down (index 2): xMove is 1, yMove is 0.
     // To move left (index 3): xMove is 0, yMove is -1.
        private static int[] xMove = {-1, 0, 1, 0};
        private static int[] yMove = { 0, 1, 0, -1};
        
        // Private helper class to check if a step/move to a cell is valid in the grid.
        private static boolean isSafe (int gridSize, int x, int y, char[][] charGrid) {
            return (x >= 0 && 
                    y >= 0 && 
                    x < gridSize && 
                    y < gridSize && 
                    charGrid[x][y] == '.');
        }
    }
    
    // Private helper class used to instantiate "Point" objects
    // A "Point" is used in the queue used to store valid moves from
    // a current "Point"
    class Point {
        public int x, y;
        public Point(int x, int y) {
            this.x = x;
            this.y = y;
        }
    }