Sort by

recency

|

5 Discussions

|

  • + 0 comments

    TĐH p=4/5 from math import comb

    P(X>2)=P(X=3)+P(X=4)=kCn*p(k)*(1-p)^(n-k)

    n=4 k1=3 k2=4 print(round(comb(n,k1)*pow(p,k1)*pow(1-p,n-k1)+comb(n,k2)*pow(p,k2)*pow(1-p,n-k2)),3) n=4 k1=1 k2=0 print(round(comb(n,k1)*pow(p,k1)*pow(1-p,n-k1)+comb(n,k2)*pow(p,k2)*pow(1-p,n-k2),3))

  • + 0 comments

    python3:

    p = 4/5
    n = 4
    
    
    def binom(k, n, p):
        res = 1
        a = 1
        for i in range(1, n+1):
            a *= i
        b = 1
        for i in range(1, n-k+1):
            b *= i
        c = 1
        for i in range(1, k+1):
            c *= i
        return a/b/c * p**k * (1-p)**(n-k)
    
    
    def prob(k):
        return binom(k, n, p)
    
    
    if __name__ == '__main__':
        result = prob(3) + prob(4)
        print('%.3f' % result)
    
        result = prob(0) + prob(1)
        print('%.3f' % result)
    
  • + 0 comments

    from math import factorial as fact

    Permutation

    def permutation(n, r): return fact(n)/(fact(n-r))

    Combinations

    def combination(n, r): return permutation(n,r)/fact(r)

    BINOMIAL DISTRIBUTION

    def binomial_dist(n, x, p):

    q = 1-p

    return combination(n, x)*(p**x)(q*(n-x))

    The rest you can do :)

  • + 0 comments

    Also make sure to put the zero

  • + 1 comment

    AAARGH you really need to round the answers in the solution checker, not just compare the files.

    If you're solving this problem, you should ONLY output 3 decimals. The instructions are not clear.

No more comments