//Manacher's algorithm: credits: http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html
#include <bits/stdc++.h>
using namespace std;
#define ll long long    

string preProcess(string s) {
  int n = s.length();
  if (n == 0) return "^$";
  string ret = "^";
  for (int i = 0; i < n; i++)
    ret += "#" + s.substr(i, 1);
 
  ret += "#$";
  return ret;
}
 
string longestPalindrome(string s) {
  string T = preProcess(s);
  int n = T.length();
  int *P = new int[n];
  int C = 0, R = 0;
  for (int i = 1; i < n-1; i++) {
    int i_mirror = 2*C-i; // equals to i' = C - (i-C)
    
    P[i] = (R > i) ? min(R-i, P[i_mirror]) : 0;
    
    // Attempt to expand palindrome centered at i
    while (T[i + 1 + P[i]] == T[i - 1 - P[i]])
      P[i]++;
 
    // If palindrome centered at i expand past R,
    // adjust center based on expanded palindrome.
    if (i + P[i] > R) {
      C = i;
      R = i + P[i];
    }
  }
 
  // Find the maximum element in P.
  int maxLen = 0;
  int centerIndex = 0;
  for (int i = 1; i < n-1; i++) {
    if (P[i] > maxLen) {
      maxLen = P[i];
      centerIndex = i;
    }
  }
  delete[] P;
  
  return s.substr((centerIndex - 1 - maxLen)/2, maxLen);
}

int main() {
  string s;
  getline(cin,s);
  string ans = longestPalindrome(preProcess(s));
  int p = ans[0]=='#'?1:0;
  for(;p<ans.size();p+=2) {
    cout<<ans[p];
  }
  cout<<endl;
  return 0;
}