This problem is a programming version of Problem 254 from projecteuler.net
Define $f(n)$ as the sum of the factorials of the digits of n. For example, $f(342)=3!+4!+2!=32$.
Define $s f(n)$ as the sum of the digits of $f(n)$. So $s f(342)=3+2=5$.
Define $g(i)$ to be the smallest positive integer n such that $s f(n)=i$. Though $s f(342)$ is $5, s f(25)$ is also 5 , and it can be verified that $g(5)$ is 25 .

Define $s g(i)$ as the sum of the digits of $g(i)$. So $s g(5)=2+5=7$.
Further, it can be verified that $g(20)$ is 267 and $\sum_{i=1}^{20} s g(i)$ is 156 .
What is $\sum_{i=1}^{n} s g(i)$? As the number can be large, print it modulo m.

Input Format

The first line of each test file contains a single integer q, which is the number of queries per test file. q lines follow, each containing two integers separated by a single space: n and m of the corresponding query.

Constraints

- $1 \leq q \leq 10^{5}$
- $1 \leq n \leq 10^{18}$
- $2 \leq m \leq 2^{30}-1$

Output Format

Print exactly q lines, each containing a single integer, which is the answer to the corresponding query.

Sample Input 0

```
2
31000000
201000000
```


Sample Output 0

Explanation 0

$g(1)=1, g(2)=2$ and $g(3)=5.1+2+5=8$.

