Project Euler \#204: Generalised Hamming Numbers

This problem is a programming version of Problem 204 from projecteuler.net
A Hamming number is a positive number which has no prime factor larger than 5 .
So the first few Hamming numbers are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15.
There are 1105 Hamming numbers not exceeding 10^{8}.
We will call a positive number a generalised Hamming number of type k, if it has no prime factor larger than k.
Hence the Hamming numbers are the generalised Hamming numbers of type 5 .
How many generalised Hamming numbers of type k are there which don't exceed n ?

Input Format

The only line of each test file contains two integer numbers separated by a single space: n and k.

Constraints

- $2 \leq k \leq 100$
- $1 \leq n$
- $n \times k \leq 10^{19}$

Output Format

Print exactly one number: the number of generalised Hamming numbers of type k which don't exceed n.

Sample Input 0

```
155
```


Sample Output 0

11

Explanation 0

These eleven are "the first few Hamming numbers" from the problem statement.

Sample Input 1

Sample Output 1

