Project Euler \# 198: Ambiguous Numbers

This problem is a programming version of Problem 198 from projecteuler.net
A best approximation to a real number x for the denominator bound d is a rational number r / s (in reduced form) with $s \leq d$, so that any rational number p / q which is closer to x than r / s has $q>d$.

Usually the best approximation to a real number is uniquely determined for all denominator bounds. However, there are some exceptions, e.g. $9 / 40$ has the two best approximations $1 / 4$ and $1 / 5$ for the denominator bound 6 . We shall call a real number x ambiguous, if there is at least one denominator bound for which x possesses two best approximations. Clearly, an ambiguous number is necessarily rational.

How many ambiguous numbers $x=p / q, a / b<x<c / d$, are there whose denominator q does not exceed N ?

Input Format

The only line of each test case contains exactly five space-separated integers: a, b, c, d and N.

Constraints

- $a / b<c / d \leq 10^{3}$
- $0 \leq a, c \leq N$
- $0<b, d \leq N$
- $1<N \leq 2 \times 10^{9}$

Output Format

On a single line print the answer modulo $10^{9}+7$.
Sample Input 0

```
14 1 2 25
```


Sample Output 0

3

Explanation 0

There are 49 rational numbers between $1 / 4$ and $1 / 2$ with the denominator no greater than 25 :

6/23, 5/19, 4/15, 3/11, 5/18, 7/25, 2/7, 7/24, 5/17, 3/10, $7 / 23,4 / 13,5 / 16,6 / 19,7 / 22,8 / 25,1 / 3,8 / 23,7 / 20,6 / 17$, $5 / 14,9 / 25,4 / 11,7 / 19,3 / 8,8 / 21,5 / 13,7 / 18,9 / 23,2 / 5$,
$9 / 22$, $7 / 17,5 / 12, ~ 8 / 19,3 / 7,10 / 23,7 / 16,11 / 25,4 / 9,9 / 20$, $5 / 11,11 / 24,6 / 13,7 / 15,8 / 17,9 / 19,10 / 21,11 / 23$ and $12 / 25$.

Only three of them are ambiguous numbers: 7/24, 5/12 and $9 / 20$

- $1 / 3$ and $1 / 4$ are the two best approximations of $7 / 24$ for the denominator bound 5 ;
- $1 / 2$ and $1 / 3$ are the two best approximations of $5 / 12$ for the denominator bound 4 ;
- $1 / 2$ and $2 / 5$ are the two best approximations of $9 / 20$ for the denominator bound 6 .

Therefore the answer is 3 .

