Project Euler \#190: Maximising a weighted product

This problem is a programming version of Problem 190 from projecteuler.net
Let $S_{m}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be the m-tuple of positive real numbers with $x_{1}+x_{2}+\ldots+x_{m}=m$ for which $P_{m}=x_{1} \times x_{2}^{2} \times \ldots \times x_{m}^{m}$ is maximised.

For example, it can be verified that $P_{10} \approx 4112.085$.
Let's make a generalization of S_{m}. Let $T_{m}(X, a)=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ (where X is a natural number and a is an m-tuple of natural numbers) be the m-tuple of positive real numbers with $x_{1}+x_{2}+\ldots+x_{m}=X$ for which $Q_{m}(X, a)=x_{1}^{a_{1}} \times x_{2}^{a_{2}} \times \ldots \times x_{m}^{a_{m}}$ is maximised.

It's easy to see that $S_{m}=T_{m}(m,(1,2, \ldots m))$.
You're given three natural numbers: X, A and m. Find the sum of $Q_{m}(X, a)$ among all a with $a_{1}+a_{2}+\ldots+a_{m}=A$ modulo $10^{9}+7$. It is guaranteed that in every test case this sum could be represented as a rational fraction with a denominator not divisible by $10^{9}+7$.

Definitions

In this problem it is considered that set of natural numbers does not include 0 .
If we have some rational number $\frac{p}{q}$ where p is integer and q is natural, then
$\frac{p}{q}(\bmod m)=p \times q^{-1}(\bmod m)$ where q^{-1} is a modular multiplicative inverse.

Input Format

The only line of each test case contains exactly three integers separated by single spaces: X, A and m.

Constraints

- $1 \leq X, A, m \leq 5 \times 10^{4}$

Output Format

Print exactly one number which is the answer to the problem modulo $10^{9}+7$.

Sample Input

```
632
```


Sample Output

Explanation

There are two ways to represent 3 as a sum of two ordered natural numbers: $3=1+2$ and $3=2+1$. $Q_{2}(6,(1,2))=Q_{2}(6,(2,1))=32$, thus the answer is 64 .

