Project Euler \#189:
 Tri-colouring a
 triangular grid

This problem is a programming version of Problem 189 from projecteuler.net
Consider the following configuration of 64 triangles:

We wish to colour the interior of each triangle with one of three colours: red, green or blue, so that no two neighbouring triangles have the same colour. Such a colouring shall be called valid. Here, two triangles are said to be neighbouring if they share an edge.
Note: if they only share a vertex, then they are not neighbours.
For example, here is a valid colouring of the above grid:

A colouring C^{\prime} which is obtained from a colouring C by rotation or reflection is considered distinct from C unless the two are identical.

Let's assume we have c colours and n^{2} triangles formed into above configuration. How many distinct valid colourings are there for such configuration?

Input Format

The only line of the test contains two integers: n and c.

Constraints

- $1 \leq n, c$
- $n+c \leq 14$

Output Format

Print exactly one integer which is the answer to the problem. Since that number could be very large, output it modulo $10^{9}+7$.

Sample Input 0

13

Sample Output 0

3

Explanation 0

We can colour the only triangle in each of the three given colours.

