Project Euler \#184: Triangles containing the origin.

This problem is a programming version of Problem 184 from projecteuler.net
Consider the set I_{r} of points (x, y) with integer co-ordinates in the interior of the circle with radius r, centered at the origin, i.e. $x^{2}+y^{2}<r^{2}$.

For a radius of $2, I_{2}$ contains the nine points $(0,0),(1,0),(1,1),(0,1),(-1,1),(-1,0),(-1,-1)$, $(0,-1)$ and $(1,-1)$. There are eight triangles having all three vertices in I_{2} which contain the origin in the interior. Two of them are shown below, the others are obtained from these by rotation.

For a radius of 3 , there are 360 triangles containing the origin in the interior and having all vertices in I_{3} and for I_{5} the number is 10600 .

How many triangles are there containing the origin in the interior and having all three vertices in I_{r} ?

Input Format

The only line of every test file contains a single integer - r.

Constraints

$2 \leq r \leq 10^{6}$

Output Format

Output a single integer - an answer to the problem modulo $10^{9}+7$

Sample Input 0

2

Sample Output 0

8

Sample Input 1

Sample Output 1

360

Sample Input 2

Sample Output 2

10600

