Project Euler \#177: Integer angled
 Quadrilaterals.

This problem is a programming version of Problem 177 from projecteuler.net
Let $A B C D$ be a convex quadrilateral, with diagonals $A C$ and $B D$. At each vertex the diagonal makes an angle with each of the two sides, creating eight corner angles.

For example, at vertex A, the two angles are $C A D, C A B$.
We call such a quadrilateral for which all eight corner angles have integer values when measured in degrees an integer angled quadrilateral. An example of an integer angled quadrilateral is a square, where all eight corner angles are 45°. Another example is given by $D A C=20^{\circ}, B A C=60^{\circ}, A B D=50^{\circ}$, $C B D=30^{\circ}, B C A=40^{\circ}, D C A=30^{\circ}, C D B=80^{\circ}, A D B=50^{\circ}$.

Consider $\left\{a_{i}\right\}$ to be sorted sequence of quadrilateral angles. What is the number of non-similar integer angled quadrilaterals such that $a_{i} \leq b_{i}$?

Note: In your calculations you may assume that a calculated angle is integral if it is within a tolerance of 10^{-9} of an integer value.

Input Format

The input contains eight numbers b_{i}.

Constraints

- $1 \leq b_{i} \leq 180$
- $b_{i} \leq b_{i+1}$

Output Format

Print the only integer which is the answer to the problem.
Sample Input 0

```
1
```


Sample Output 0

Explanation 0

There is exactly one such quadrilateral.

