Project Euler \#174: Counting the number of "hollow" square laminae that can form one, two, three, ... distinct arrangements.

This problem is a programming version of Problem 174 from projecteuler.net
We shall define a square lamina to be a square outline with a square "hole" so that the shape possesses vertical and horizontal symmetry.

Given eight tiles it is possible to form a lamina in only one way: 3×3 square with a 1×1 hole in the middle. However, using thirty-two tiles it is possible to form two distinct laminae.

If t represents the number of tiles used, we shall say that $t=8$ is type $L(1)$ and $t=32$ is type $L(2)$.
Let $N_{k}(n)$ be the number of $t \leq k$ such that t
is type $L(n)$; for example, $N_{10^{6}}(15)=832$.
Given k, calculate $\sum_{n=1}^{10} N_{k}(n)$.

Input Format

The first line of input contains an integer T which is the number of testcases.
Each of the following T lines contain one integer k.
Constraints

- $1 \leq T \leq 10^{6}$
- $4 \leq k \leq 10^{6}$

Output Format

For each testcase output the only integer which is the answer to the problem.

Sample Input 0

```
1
```

100

Sample Output 0

Explanation 0

For $k=100$:

- $N_{k}(1)=\{8,12,16,20,28,36,44,52,68,76,92,100\}$
- $N_{k}(2)=\{24,32,40,56,60,64,84,88\}$
- $N_{k}(3)=\{48,72,80\}$
- $N_{k}(4)=\{96\}$
- $N_{k}(5)=N_{k}(6)=\cdots=N_{k}(10)=\varnothing$

