Project Euler \#157: Solving the diophantine equation $1 / a+1 / b=p / 10^{\wedge} n$

This problem is a programming version of Problem 157 from projecteuler.net
Consider the diophantine equation $\frac{1}{a}+\frac{1}{b}=\frac{p}{10}$ with a, b, p positive integers and $a \leq b$. This equation has 20 solutions that are listed below:

$$
\begin{aligned}
& \frac{1}{1}+\frac{1}{1}=\frac{20}{10} \quad \frac{1}{1}+\frac{1}{2}=\frac{15}{10} \quad \frac{1}{1}+\frac{1}{5}=\frac{12}{10} \quad \frac{1}{1}+\frac{1}{10}=\frac{11}{10} \quad \frac{1}{2}+\frac{1}{2}=\frac{10}{10} \\
& \frac{1}{2}+\frac{1}{5}=\frac{7}{10} \quad \frac{1}{2}+\frac{1}{10}=\frac{6}{10} \quad \frac{1}{3}+\frac{1}{6}=\frac{5}{10} \quad \frac{1}{3}+\frac{1}{15}=\frac{4}{10} \quad \frac{1}{4}+\frac{1}{4}=\frac{5}{10} \\
& \frac{1}{4}+\frac{1}{20}=\frac{3}{10} \quad \frac{1}{5}+\frac{1}{5}=\frac{4}{10} \quad \frac{1}{5}+\frac{1}{10}=\frac{3}{10} \quad \frac{1}{6}+\frac{1}{30}=\frac{2}{10} \quad \frac{1}{10}+\frac{1}{10}=\frac{2}{10} \\
& \frac{1}{11}+\frac{1}{110}=\frac{1}{10} \quad \frac{1}{12}+\frac{1}{60}=\frac{1}{10} \quad \frac{1}{14}+\frac{1}{35}=\frac{1}{10} \quad \frac{1}{15}+\frac{1}{30}=\frac{1}{10} \quad \frac{1}{20}+\frac{1}{20}=\frac{1}{10}
\end{aligned}
$$

Let's make generalized version of this equation: $\frac{1}{a}+\frac{1}{b}=\frac{p}{p_{1}^{\alpha_{1} \cdot p_{2}^{\alpha_{2}}}}$ with positive integers α_{1}, α_{2} and primes p_{1}, p_{2}. How many solutions does this equation has for $1 \leq \alpha_{1} \leq r_{1}, 1 \leq \alpha_{2} \leq r_{2}$?

Note, that if tuple $\{a, b, p\}$ occurs as a solution of the equation for multiple α_{1}, α_{2} it should be calculated multiple times and not once.

Input Format

Each test file starts with a number T on a separate line which is the number of tests per file. T lines follow, each containing p_{1}, r_{1}, p_{2} and r_{2} separated by single spaces.

Constraints

- $1 \leqslant T \leqslant 10$
- $p_{1} \neq p_{2}$ are primes
- $1 \leqslant r 1, r 2$
- $p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \leqslant 10^{18}$

Output Format

Output T lines, each containing an answer to the corresponding test.

Sample Input

Sample Output

