Project Euler \#156: Counting Digits

This problem is a programming version of Problem 156 from projecteuler.net
Starting from zero the natural numbers are written down in base 10 like this: 01234567891011 12....

Consider the digit $d=1$. After we write down each number n, we will update the number of ones that have occurred and call this number $f(n, 1)$. The first values for $f(n, 1)$, then, are as follows:

n	$f(n, 1)$
0	0
1	1
2	1
3	1
4	1
5	1
6	1
7	1
8	1
9	1
10	2
11	4
12	5

Note that $f(n, 1)$ never equals 3 .
So the first two solutions of the equation $f(n, 1)$ are $n=0$ and $n=1$. The next solution is $n=199981$.
In the same manner the function $f(n, d)$ gives the total number of digits d that have been written down after the number n has been written.

In fact, for every digit $d \neq 0,0$ is the first solution of the equation $f(n, d)=n$.
Let $s(d)$ be the sum of all the solutions for which $f(n, d)=n$.
You are given base b and the set M of digits in base b. Find $\sum_{d \in M} s(d)$ for numbers written in base b.
Note: if, for some $n, f(n, d)=n$ for more than one value of d this value of n is counted again for every value of d for which $f(n, d)=n$.

Input Format

First line of each test contains two integers: b and $|M|$ - base and the cardinal number of M. Second line contains $|M|$ distinct space-separated digits M_{i} in base b.

Constraints

- $2 \leqslant b \leqslant 10$
- $1 \leqslant|M|<b$
- $1 \leqslant M_{i}<b$

Output Format
Output a single number which is the answer to the problem.

Sample Input

21
1

Sample Output

3

Explanation

There are two solutions where $f(n, 1)=n$ which are $n=1_{2}=1$ and $n=10_{2}=2$. Starting from $n=11_{2}=3 f(n, 1)>n$.

