Project Euler #153: Investigating Gaussian Integers

This problem is a programming version of Problem 153 from projecteuler.net

As we all know the equation $x^2 = -1$ has no solutions for real x.

If we however introduce the imaginary number i this equation has two solutions: x=i and x=-i. If we go a step further the equation $(x-3)^2=-4$ has two complex solutions: x=3+2i and x=3-2i

x=3+2i and x=3-2i are called each others' complex conjugate.

Numbers of the form a + bi are called complex numbers.

In general a+bi and a-bi are each other's complex conjugate.

A Gaussian Integer is a complex number a+bi such that both a and b are integers.

The regular integers are also Gaussian integers (with b=0).

To distinguish them from Gaussian integers with b
eq 0 we call such integers "rational integers."

A Gaussian integer is called a divisor of a rational integer n if the result is also a Gaussian integer. If for example we divide 5 by 1+2i we can simplify in the following manner:

Multiply numerator and denominator by the complex conjugate of 1+2i: 1-2i. The result is

$$\frac{5}{1+2i} = \frac{5}{1+2i} \frac{1-2i}{1-2i} = \frac{5(1-2i)}{1-(2i)^2} = \frac{5(1-2i)}{1-(-4)} = \frac{5(1-2i)}{5} = 1-2i$$

So 1+2i is a divisor of 5.

Note that 1+i is not a divisor of 5 because $\frac{5}{1+i}=\frac{5}{2}-\frac{5}{2}i$.

Note also that if the Gaussian Integer (a+bi) is a divisor of a rational integer n, then its complex conjugate (a-bi) is also a divisor of n.

In fact, 5 has six divisors such that the real part is positive: $\{1, 1+2i, 1-2i, 2+i, 2-i, 5\}$.

The following is a table of all of the divisors for the first five positive rational integers:

n	Gaussian integer divisors with positive real part	Sum $s(n)$ of these divisors
1	1	1
2	1, 1+ <i>i</i> , 1- <i>i</i> , 2	5
3	1, 3	4
4	1, 1+ <i>i</i> , 1- <i>i</i> , 2, 2+2 <i>i</i> , 2-2 <i>i</i> ,4	13
5	1, 1+2 <i>i</i> , 1-2 <i>i</i> , 2+ <i>i</i> , 2- <i>i</i> , 5	12

For divisors with positive real parts, then, we have $\sum\limits_{n=1}^{5}s(n)=35.$

For
$$1 \leq n \leq 10^5$$
 , $\sum s(n) = 17924657155$.

What is $\sum s(n)$ for $1 \leq n \leq N$?

Input Format

First and only line of each test file contains a single integer ${\it N}.$

Constraints

• $1 \le N \le 2 \times 10^8$

Output Format

Output the only integer - the answer to the problem.

Sample Input

5

Sample Output

35