Project Euler \#153: Investigating
 Gaussian Integers

This problem is a programming version of Problem 153 from projecteuler.net
As we all know the equation $x^{2}=-1$ has no solutions for real x.
If we however introduce the imaginary number i this equation has two solutions: $x=i$ and $x=-i$. If we go a step further the equation $(x-3)^{2}=-4$ has two complex solutions: $x=3+2 i$ and $x=3-2 i$.
$x=3+2 i$ and $x=3-2 i$ are called each others' complex conjugate.
Numbers of the form $a+b i$ are called complex numbers.
In general $a+b i$ and $a-b i$ are each other's complex conjugate.
A Gaussian Integer is a complex number $a+b i$ such that both a and b are integers.
The regular integers are also Gaussian integers (with $b=0$).
To distinguish them from Gaussian integers with $b \neq 0$ we call such integers "rational integers."
A Gaussian integer is called a divisor of a rational integer n if the result is also a Gaussian integer. If for example we divide 5 by $1+2 i$ we can simplify in the following manner:

Multiply numerator and denominator by the complex conjugate of $1+2 i$: $1-2 i$. The result is

$$
\frac{5}{1+2 i}=\frac{5}{1+2 i} \frac{1-2 i}{1-2 i}=\frac{5(1-2 i)}{1-(2 i)^{2}}=\frac{5(1-2 i)}{1-(-4)}=\frac{5(1-2 i)}{5}=1-2 i
$$

So $1+2 i$ is a divisor of 5 .
Note that $1+i$ is not a divisor of 5 because $\frac{5}{1+i}=\frac{5}{2}-\frac{5}{2} i$.
Note also that if the Gaussian Integer $(a+b i)$ is a divisor of a rational integer n, then its complex conjugate $(a-b i)$ is also a divisor of n.

In fact, 5 has six divisors such that the real part is positive: $\{1,1+2 i, 1-2 i, 2+i, 2-i, 5\}$.
The following is a table of all of the divisors for the first five positive rational integers:

n	Gaussian integer divisors with positive real part	Sum $s(n)$ of these divisors
1	1	1
2	$1,1+i, 1-i, 2$	5
3	1,3	4
4	$1,1+i, 1-i, 2,2+2 i, 2-2 i, 4$	13
5	$1,1+2 i, 1-2 i, 2+i, 2-i, 5$	12

For divisors with positive real parts, then, we have $\sum_{n=1}^{5} s(n)=35$.
For $1 \leq n \leq 10^{5}, \sum s(n)=17924657155$.

What is $\sum s(n)$ for $1 \leq n \leq N$?

Input Format

First and only line of each test file contains a single integer N.

Constraints

- $1 \leq N \leq 2 \times 10^{8}$

Output Format

Output the only integer - the answer to the problem.

Sample Input

Sample Output

