Project Euler \#143: Investigating the Torricelli point of a triangle

This problem is a programming version of Problem 143 from projecteuler.net
Let $A B C$ be a triangle with all interior angles being less than 120 degrees. Let X be any point inside the triangle and let $X A=p, X B=q$, and $X C=r$.

Fermat challenged Torricelli to find the position of X such that $p+q+r$ was minimised.
Torricelli was able to prove that if equilateral triangles $A O B, B N C$ and $A M C$ are constructed on each side of triangle $A B C$, the circumscribed circles of $A O B, B N C$, and $A M C$ will intersect at a single point, T, inside the triangle. Moreover he proved that T, called the Torricelli/Fermat point, minimises $p+q+r$. Even more remarkable, it can be shown that when the sum is minimised, $A N=B M=C O=p+q+r$ and that $A N, B M$ and $C O$ also intersect at T.

If the sum is minimised and a, b, c, p, q and r are all positive integers we shall call triangle $A B C$ a Torricelli triangle. For example, $a=399, b=455, c=511$ is an example of a Torricelli triangle, with $p+q+r=784$.

Given N, print all the side lengths (a, b, c) of all Torricelli triangles having $p+q+r \leq N$. To ensure that no triangle is printed more than once, ensure that $a \leq b \leq c$. Print the triangles with smaller a first, and

Input Format

The input contains a single integer, N.

Constraints

Input file \#1-\#2:
$1 \leq N \leq 10^{4}$
Input file \#3-\#4:
$1 \leq N \leq 10^{5}$
Input file \#5-\#8:
$1 \leq N \leq 4 \cdot 10^{5}$

Output Format

For each test case, output one line for each Torricelli triangle containing three integers separated by single spaces: a, b and c.

Sample Input

```
1 0 0 0
```


Sample Output

399455511

Explanation

There is only one such triangle, which is described in the problem statement.

