Project Euler \#140: Modified Fibonacci golden nuggets

This problem is a programming version of Problem 140 from projecteuler.net
Consider the infinite polynomial series $A_{G}(x)=x G_{1}+x^{2} G_{2}+x^{3} G_{3}+\ldots$, where G_{k} is the $k^{\text {th }}$ term of the second-order recurrence relation $G_{k}=G_{k-1}+G_{k-2}, G_{1}=1$ and $G_{2}=4$; that is, $1,4,5,9,14,23, \ldots$.

For this problem we shall be interested in values of x for which $A_{G}(x)$ is a positive integer.
The corresponding values of x for the first five natural numbers are shown below.

x	$A_{G}(x)$
$\frac{\sqrt{5}-1}{4}$	1
$\frac{2}{5}$	2
$\frac{\sqrt{22}-2}{6}$	3
$\frac{\sqrt{137}-5}{14}$	4
$\frac{1}{2}$	5

We shall call $A_{G}(x)$ a golden nugget if x is rational, because they become increasingly rarer. for example, the $20^{\text {th }}$ golden nugget is 211345365 .

Let's denote the $k^{\text {th }}$ golden nugget as $g(k)$; for example, $g(20)=211345365$.
Given L and R, find $\sum_{k=L}^{R} g(k)$, i.e., $g(L)+g(L+1)+\ldots+g(R-1)+g(R)$. Since this sum can be very large, output it modulo $10^{9}+7$.

Input Format

The first line of input contains T, the number of test cases.
Each test case consists of a single line containing two space-separated integers, L and R.

Constraints

$1 \leq T \leq 40000$
In the first test case: $1 \leq L \leq R \leq 40$
In the second test case: $1 \leq L \leq R \leq 10^{6}$
In the third test case: $1 \leq L \leq R \leq 10^{18}$

Output Format

For each test case, output a single line containing a single integer, the answer for that test case.
Sample Input

```
2
12
20 20
```


Sample Output

7
211345365

