Project Euler \#123: Prime square remainders

This problem is a programming version of Problem 123 from projecteuler.net
Let p_{n} be the nth prime: $2,3,5,7,11, \ldots$, and let r be the remainder when $\left(p_{n}-1\right)^{n}+\left(p_{n}+1\right)^{n}$ is divided by p_{n}^{2}.

For example, when $n=3, p_{3}=5$ and $4^{3}+6^{3}=280 \equiv 5(\bmod 25)$.
The least value of n for which the remainder first exceeds 100 is 5 .
Find the least value of n for which the remainder first exceeds B.

Input Format

The first line of input contains T, the number of test cases.
Each test case consists of a single line containing a single integer, B.

Constraints

$1 \leq T \leq 10^{5}$
$1 \leq B \leq 10^{12}$

Output Format

For each test case, output a single line containing a single integer, the requested answer.
Sample Input
100

Sample Output

5

Explanation

As noted above, the first n for which the remainder exceeds 100 is 5 . The remainder when $n=5$ is $\left(p_{5}-1\right)^{5}+\left(p_{5}+1\right)^{5}=10^{5}+12^{5}=348832 \equiv 110\left(\bmod 11^{2}\right)$, which definitely exceeds 100 . You may easily check that the remainder doesn't exceed 100 when $n<5$.

