Project Euler \#93: Arithmetic expressions

This problem is a programming version of Problem 93 from projecteuler.net
By using each of the digits from the set, $1,2,3,4$, exactly once, and making use of the four arithmetic operations $(+,-, *, /)$ and brackets/parentheses, it is possible to form different positive integer targets.

For example,

$$
\begin{aligned}
& 8=(4 \times(1+3)) / 2 \\
& 14=4 \times(3+1 / 2) \\
& 19=4 \times(2+3)-1 \\
& 36=3 \times 4 \times(2+1)
\end{aligned}
$$

Note that concatenations of the digits, like $12+34$, are not allowed.
Using the set, $1,2,3,4$, it is possible to obtain thirty-one different target numbers of which 36 is the maximum, and each of the numbers 1 to 28 can be obtained before encountering the first nonexpressible number.

Given a set of m distinct digits, S, find the largest possible integer n such that each integer from 1 to n is expressible using elements of S and following the above rules. If 1 is also not expressible, output 0 instead.

Input Format

The first line contains m.
The second line contains m space separated integers, the elements of S.

Constraints

$1 \leq m \leq 5$

Output Format

Output a single integer, the answer to the problem.

Sample Input

```
1 2 3 4
```


Sample Output

Explained in the statement.

