Project Euler \#90: Cube digit pairs

This problem is a programming version of Problem 90 from projecteuler.net
Each of the six faces on a cube has a different digit (0 to 9) written on it; the same is done to a second cube. By placing the two cubes side-by-side in different positions we can form a variety of 2-digit numbers.

For example, the square number 64 could be formed:

In fact, by carefully choosing the digits on both cubes it is possible to display all of the square numbers below one-hundred: $01,04,09,16,25,36,49,64$, and 81 .

For example, one way this can be achieved is by placing $0,5,6,7,8,9$ on one cube and $1,2,3,4,8,9$ on the other cube.

However, for this problem we shall allow the 6 or 9 to be turned upside-down so that an arrangement like $0,5,6,7,8,9$ and $1,2,3,4,6,7$ allows for all nine square numbers to be displayed; otherwise it would be impossible to obtain 09 .

In determining a distinct arrangement we are interested in the digits on each cube, not the order.
$1,2,3,4,5,6$ is equivalent to $3,6,4,1,2,5$
$1,2,3,4,5,6$ is distinct from $1,2,3,4,5,9$
But because we are allowing 6 and 9 to be reversed, the two distinct sets in the last example both represent the extended set $1,2,3,4,5,6,9$ for the purpose of forming 2-digit numbers.

How many distinct arrangements of the M cubes allow for all of the first N square numbers (1.. N^{2}) to be displayed?

Input Format

Each test contains a single line with two numbers - N and M
$1 \leq M \leq 3$
$1 \leq N<10^{\frac{M}{2}}$

Output Format

Output should contain the only number - the answer to the problem.

Sample Input

```
    31
```


Sample Output

```
5 5
```


Explanation

In order to display 3 numbers - 1, 4 and 9 - our only cube should have $(1,4,9)$ or $(1,4,6)$.
That gives us $\binom{7}{3}=35$ variants for $(1,4,9),\binom{7}{3}=35$ variants for $(1,4,6)$ and $\binom{6}{2}=15$ variants for $(1,4,6,9)$ as the intersection to be subtracted.
Now, $35+35-15=55$.

