Project Euler #88: Product-sum numbers

This problem is a programming version of Problem 88 from projecteuler.net

A natural number, N, that can be written as the sum and product of a given set of at least two natural numbers, a_1, a_2, \dots, a_k , is called a product-sum number:

$$N = a_1 + a_2 + \cdots + a_k = a_1 \times a_2 \times \cdots \times a_k.$$

For example, $6 = 1 + 2 + 3 = 1 \times 2 \times 3$.

For a given set of size, k, we shall call the smallest N with this property a minimal product-sum number. The minimal product-sum numbers for sets of size, $k=2,3,4,5,\ and\ 6$ are as follows.

$$k = 2: 4 = 2 \times 2 = 2 + 2$$

$$k = 3: 6 = 1 \times 2 \times 3 = 1 + 2 + 3$$

$$k = 4: 8 = 1 \times 1 \times 2 \times 4 = 1 + 1 + 2 + 4$$

$$k = 5: 8 = 1 \times 1 \times 2 \times 2 \times 2 = 1 + 1 + 2 + 2 + 2$$

$$k = 6: 12 = 1 \times 1 \times 1 \times 1 \times 1 \times 2 \times 6 = 1 + 1 + 1 + 1 + 1 + 2 + 6$$

Hence for $2 \le k \le 6$, the sum of all the minimal product-sum numbers is 4+6+8+12=30; note that 8 is only counted once in the sum.

In fact, as the complete set of minimal product-sum numbers for $2 \le k \le 12$ is 4, 6, 8, 12, 15, 16, the sum is 61.

What is the sum of all the minimal product-sum numbers for $2 \le k \le N$?

Input Format

First and only line contains an integer N.

Constraints

$$10 \le N \le 2 imes 10^5$$

Output Format

Print the required answer.

Sample Input

12

Sample Output