Project Euler \#61: Cyclical figurate numbers

This problem is a programming version of Problem 61 from projecteuler.net
Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae:

Triangle	$P_{3, n}=\frac{n \times(n+1)}{2}$	
Square	$P_{4, n}=n^{2}$	$1,3,6,10,15, \cdots$
Pentagon	$P_{5, n}=\frac{n \times(3 n-1)}{2}$	$1,4,9,16,25, \cdots$
Hexagon	$P_{6, n}=n \times(2 n-1)$	$1,6,15,22,35,45, \cdots$
Heptagon	$P_{7, n}=\frac{n \times(5 n-3)}{2}$	$1,7,18,34,55, \cdots$
Octagon	$P_{8, n}=n \times(3 n-2)$	$1,8,21,40,65, \cdots$

The ordered set of three 4-digit numbers: $8128,2882,8281$, has three interesting properties.

- The set is cyclic, in that the last two digits of each number is the first two digits of the next number (including the last number with the first).
- Each polygonal type: triangle $\left(P_{3,127}=8128\right)$, square $\left(P_{4,91}=8281\right)$, and pentagonal $\left(P_{5,44}=2882\right)$, is represented by a different number in the set.
- This is the only set of 4-digit numbers with this property.

You are given a set of numbers $N \in\{3,4,5,6,7,8\}$ find the sum of $4-$ digit numbers from N - gonal sets that respect the above property. If there are multiple such numbers print their sums in sorted order.

Input Format

First line of input contains a number T .
Second line contains set of T numbers each separated by a space.

Constraints

$3 \leq T \leq 6$

Output Format

Print the answer corresponding to the test case.

Sample Input

Sample Output

19291

