Project Euler \#45: Triangular, pentagonal, and hexagonal

This problem is a programming version of Problem 45 from projecteuler.net
Triangle, pentagonal, and hexagonal numbers are generated by the following formulae:

Triangle	$T_{n}=n(n+1) / 2$	$1,3,6,10,15, \cdots$
Pentagonal	$P_{n}=n(3 n-1) / 2$	$1,5,12,22,35, \cdots$
Hexagonal	$H_{n}=n(2 n-1)$	$1,6,15,28,45, \cdots$

It can be verified that $T_{285}=P_{165}=H_{143}=40755$
For this challenge you are given N, a, b, where $a<b$ and $a, b \in\{3,5,6\}$
where 3 represents triangular numbers, 5 represents pentagonal numbers and 6 is hexagonal. It can be observed that all hexagonal numbers are triangular numbers so we'll handle only 2 kinds of queries as
N 3 5, find all numbers below N which are Triangular number as well as Pentagonal
$N 56$, find all numbers below N which are Pentagonal number as well as Hexagonal

Input Format

Input contains three integers $N a b$

Output Format

Print the answer corresponding to the test case. Print numbers in ascending oder.
Constraints
$2 \leq N \leq 2 \times 10^{14}$
$a, b \in\{3,5,6\}$
$a<b$
Sample Input \#00

1000035

Sample Output \#00

1
210

Sample Input \#01

Sample Output \#01

