Project Euler \#29: Distinct powers

This problem is a programming version of Problem 29 from projecteuler.net
Consider all integer combinations of a^{b} for $2 \leq a \leq 5$ and $2 \leq b \leq 5$:

$$
\begin{gathered}
2^{2}=4,2^{3}=8,2^{4}=16,2^{5}=32 \\
3^{2}=9,3^{3}=27,3^{4}=81,3^{5}=243 \\
4^{2}=16,4^{3}=64,4^{4}=256,4^{5}=1024 \\
5^{2}=25,5^{3}=125,5^{4}=625,5^{5}=3125
\end{gathered}
$$

If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:

$$
4,8,9,16,25,27,32,64,81,125,243,256,625,1024,3125
$$

How many distinct terms are in the sequence generated by a^{b} for $2 \leq a \leq N$ and $2 \leq b \leq N$?

Input Format

Input contains an integer N

Constraints

$2 \leq N \leq 10^{5}$

Output Format

Print the answer corresponding to the test case.
Sample Input

5

Sample Output

```
15
```

