Project Euler \#12: Highly divisible triangular number

This problem is a programming version of Problem 12 from projecteuler.net
The sequence of triangle numbers is generated by adding the natural numbers. So the 7 'th triangle number would be $1+2+3+4+5+6+7=28$. The first ten terms would be:
$1,3,6,10,15,21,28,36,45,55, \ldots$
Let us list the factors of the first seven triangle numbers:
$1: 1$
$3: 1,3$
$6: 1,2,3,6$
$10: 1,2,5,10$
$15: 1,3,5,15$
$21: 1,3,7,21$
$28: 1,2,4,7,14,28$
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over N divisors?

Input Format

First line T, the number of testcases. Each testcase consists of N in one line.

Constraints

- $1 \leqslant T \leqslant 10$
- $1 \leqslant N \leqslant 10^{3}$

Output Format

For each testcase, print the required answer in one line.

Sample Input

```
4
1
2
3
4
```

Sample Output

Explanation

Explained in statement.

