import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.BufferedReader;
import java.io.InputStream;

/**
 * Built using CHelper plug-in
 * Actual solution is at the top
 */
public class Solution {
    public static void main(String[] args) {
        InputStream inputStream = System.in;
        OutputStream outputStream = System.out;
        InputReader in = new InputReader(inputStream);
        OutputWriter out = new OutputWriter(outputStream);
        SherlocksArrayMergingAlgorithm solver = new SherlocksArrayMergingAlgorithm();
        solver.solve(1, in, out);
        out.close();
    }

    static class SherlocksArrayMergingAlgorithm {
        public int mod = 1000000007;
        public boolean[][] inc;
        public long[] fact;
        public long[] ifact;
        public int n;
        public long[][] dp;

        public void solve(int testNumber, InputReader in, OutputWriter out) {
            n = in.nextInt();
            long[][] w = Factorials.getFIF(2 * n, mod);
            fact = w[0];
            ifact = w[1];
            int[] arr = in.readIntArray(n);
            inc = new boolean[n][n];
            for (int i = 0; i < n; i++) {
                inc[i][i] = true;
                for (int j = i + 1; j < n; j++) {
                    inc[i][j] = inc[i][j - 1] && (arr[j] > arr[j - 1]);
                }
            }
            dp = new long[n][n];
            for (long[] x : dp) Arrays.fill(x, -1);
            long ans = 0;
            for (int i = 0; i < n && inc[0][i]; i++) {
                ans = (ans + dfs(i + 1, i + 1)) % mod;
            }
            out.println(ans);
        }

        public long dfs(int curidx, int lastblock) {
            if (curidx == n) return 1;
            if (dp[curidx][lastblock] != -1) return dp[curidx][lastblock];
            long ret = 0;
            for (int next = curidx; next < n && next < curidx + lastblock && inc[curidx][next]; next++) {
                int cblock = (next - curidx + 1);
                ret = (ret + fact[lastblock] * ifact[lastblock - cblock] % mod * dfs(next + 1, cblock)) % mod;
            }
            return dp[curidx][lastblock] = ret;
        }

    }

    static class InputReader {
        public BufferedReader reader;
        public StringTokenizer tokenizer;

        public InputReader(InputStream stream) {
            reader = new BufferedReader(new InputStreamReader(stream), 32768);
            tokenizer = null;
        }

        public String next() {
            while (tokenizer == null || !tokenizer.hasMoreTokens()) {
                try {
                    tokenizer = new StringTokenizer(reader.readLine());
                } catch (IOException e) {
                    throw new RuntimeException(e);
                }
            }
            return tokenizer.nextToken();
        }

        public int[] readIntArray(int tokens) {
            int[] ret = new int[tokens];
            for (int i = 0; i < tokens; i++) {
                ret[i] = nextInt();
            }
            return ret;
        }

        public int nextInt() {
            return Integer.parseInt(next());
        }

    }

    static class OutputWriter {
        private final PrintWriter writer;

        public OutputWriter(OutputStream outputStream) {
            writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
        }

        public OutputWriter(Writer writer) {
            this.writer = new PrintWriter(writer);
        }

        public void close() {
            writer.close();
        }

        public void println(long i) {
            writer.println(i);
        }

    }

    static class Factorials {
        public static long[][] getFIF(int max, int mod) {
            long[] fact = new long[max];
            long[] ifact = new long[max];
            long[] inv = new long[max];
            inv[1] = 1;
            for (int i = 2; i < max; i++) {
                inv[i] = (mod - mod / i) * inv[mod % i] % mod;
            }
            fact[0] = 1;
            ifact[0] = 1;
            for (int i = 1; i < max; i++) {
                fact[i] = fact[i - 1] * i % mod;
                ifact[i] = ifact[i - 1] * inv[i] % mod;
            }
            return new long[][]{fact, ifact, inv};
        }

    }
}