function processData(input) { var lines = input.split("\n"); var num = lines[0].split(" "); var m = parseInt(num[0]); var n = parseInt(num[1]); var M = BigInteger(m); var N = BigInteger(n); console.log(cuts(M, N).toString()); } function cuts(N, M) { //console.error(N + " " + M); if (M == 1 && N == 1 ) return BigInteger(0); if (M ==1) return BigInteger(N-1); if (N ==1) return BigInteger(M-1); //if (M == N) return (M-1) + (M) * (M-1); if (N > M) return BigInteger.multiply(N, cuts(1, M)).add(N-1); if (N <= M) return BigInteger.multiply(M, cuts(1, N)).add(M-1); } process.stdin.resume(); process.stdin.setEncoding("ascii"); _input = ""; process.stdin.on("data", function (input) { _input += input; }); process.stdin.on("end", function () { processData(_input); }); /* JavaScript BigInteger library version 0.9 http://silentmatt.com/biginteger/ Copyright (c) 2009 Matthew Crumley Copyright (c) 2010,2011 by John Tobey Licensed under the MIT license. Support for arbitrary internal representation base was added by Vitaly Magerya. */ /* File: biginteger.js Exports: */ /* Class: BigInteger An arbitrarily-large integer. objects should be considered immutable. None of the "built-in" methods modify *this* or their arguments. All properties should be considered private. All the methods of instances can be called "statically". The static versions are convenient if you don't already have a object. As an example, these calls are equivalent. > BigInteger(4).multiply(5); // returns BigInteger(20); > BigInteger.multiply(4, 5); // returns BigInteger(20); > var a = 42; > var a = BigInteger.toJSValue("0b101010"); // Not completely useless... */ // IE doesn't support Array.prototype.map if (!Array.prototype.map) { Array.prototype.map = function(fun /*, thisp*/) { var len = this.length >>> 0; if (typeof fun !== "function") { throw new TypeError(); } var res = new Array(len); var thisp = arguments[1]; for (var i = 0; i < len; i++) { if (i in this) { res[i] = fun.call(thisp, this[i], i, this); } } return res; }; } /* Constructor: BigInteger() Convert a value to a . Although is the constructor for objects, it is best not to call it as a constructor. If *n* is a object, it is simply returned as-is. Otherwise, is equivalent to without a radix argument. > var n0 = BigInteger(); // Same as > var n1 = BigInteger("123"); // Create a new with value 123 > var n2 = BigInteger(123); // Create a new with value 123 > var n3 = BigInteger(n2); // Return n2, unchanged The constructor form only takes an array and a sign. *n* must be an array of numbers in little-endian order, where each digit is between 0 and BigInteger.base. The second parameter sets the sign: -1 for negative, +1 for positive, or 0 for zero. The array is *not copied and may be modified*. If the array contains only zeros, the sign parameter is ignored and is forced to zero. > new BigInteger([5], -1): create a new BigInteger with value -5 Parameters: n - Value to convert to a . Returns: A value. See Also: , */ function BigInteger(n, s) { if (!(this instanceof BigInteger)) { if (n instanceof BigInteger) { return n; } else if (typeof n === "undefined") { return BigInteger.ZERO; } return BigInteger.parse(n); } n = n || []; // Provide the nullary constructor for subclasses. while (n.length && !n[n.length - 1]) { --n.length; } this._d = n; this._s = n.length ? (s || 1) : 0; } // Base-10 speedup hacks in parse, toString, exp10 and log functions // require base to be a power of 10. 10^7 is the largest such power // that won't cause a precision loss when digits are multiplied. BigInteger.base = 10000000; BigInteger.base_log10 = 7; BigInteger.init = function() { // Constant: ZERO // 0. BigInteger.ZERO = new BigInteger([], 0); // Constant: ONE // 1. BigInteger.ONE = new BigInteger([1], 1); // Constant: M_ONE // -1. BigInteger.M_ONE = new BigInteger(BigInteger.ONE._d, -1); // Constant: _0 // Shortcut for . BigInteger._0 = BigInteger.ZERO; // Constant: _1 // Shortcut for . BigInteger._1 = BigInteger.ONE; /* Constant: small Array of from 0 to 36. These are used internally for parsing, but useful when you need a "small" . See Also: , , <_0>, <_1> */ BigInteger.small = [ BigInteger.ZERO, BigInteger.ONE, /* Assuming BigInteger.base > 36 */ new BigInteger( [2], 1), new BigInteger( [3], 1), new BigInteger( [4], 1), new BigInteger( [5], 1), new BigInteger( [6], 1), new BigInteger( [7], 1), new BigInteger( [8], 1), new BigInteger( [9], 1), new BigInteger([10], 1), new BigInteger([11], 1), new BigInteger([12], 1), new BigInteger([13], 1), new BigInteger([14], 1), new BigInteger([15], 1), new BigInteger([16], 1), new BigInteger([17], 1), new BigInteger([18], 1), new BigInteger([19], 1), new BigInteger([20], 1), new BigInteger([21], 1), new BigInteger([22], 1), new BigInteger([23], 1), new BigInteger([24], 1), new BigInteger([25], 1), new BigInteger([26], 1), new BigInteger([27], 1), new BigInteger([28], 1), new BigInteger([29], 1), new BigInteger([30], 1), new BigInteger([31], 1), new BigInteger([32], 1), new BigInteger([33], 1), new BigInteger([34], 1), new BigInteger([35], 1), new BigInteger([36], 1) ]; } BigInteger.init(); // Used for parsing/radix conversion BigInteger.digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ".split(""); /* Method: toString Convert a to a string. When *base* is greater than 10, letters are upper case. Parameters: base - Optional base to represent the number in (default is base 10). Must be between 2 and 36 inclusive, or an Error will be thrown. Returns: The string representation of the . */ BigInteger.prototype.toString = function(base) { base = +base || 10; if (base < 2 || base > 36) { throw new Error("illegal radix " + base + "."); } if (this._s === 0) { return "0"; } if (base === 10) { var str = this._s < 0 ? "-" : ""; str += this._d[this._d.length - 1].toString(); for (var i = this._d.length - 2; i >= 0; i--) { var group = this._d[i].toString(); while (group.length < BigInteger.base_log10) group = '0' + group; str += group; } return str; } else { var numerals = BigInteger.digits; base = BigInteger.small[base]; var sign = this._s; var n = this.abs(); var digits = []; var digit; while (n._s !== 0) { var divmod = n.divRem(base); n = divmod[0]; digit = divmod[1]; // TODO: This could be changed to unshift instead of reversing at the end. // Benchmark both to compare speeds. digits.push(numerals[digit.valueOf()]); } return (sign < 0 ? "-" : "") + digits.reverse().join(""); } }; // Verify strings for parsing BigInteger.radixRegex = [ /^$/, /^$/, /^[01]*$/, /^[012]*$/, /^[0-3]*$/, /^[0-4]*$/, /^[0-5]*$/, /^[0-6]*$/, /^[0-7]*$/, /^[0-8]*$/, /^[0-9]*$/, /^[0-9aA]*$/, /^[0-9abAB]*$/, /^[0-9abcABC]*$/, /^[0-9a-dA-D]*$/, /^[0-9a-eA-E]*$/, /^[0-9a-fA-F]*$/, /^[0-9a-gA-G]*$/, /^[0-9a-hA-H]*$/, /^[0-9a-iA-I]*$/, /^[0-9a-jA-J]*$/, /^[0-9a-kA-K]*$/, /^[0-9a-lA-L]*$/, /^[0-9a-mA-M]*$/, /^[0-9a-nA-N]*$/, /^[0-9a-oA-O]*$/, /^[0-9a-pA-P]*$/, /^[0-9a-qA-Q]*$/, /^[0-9a-rA-R]*$/, /^[0-9a-sA-S]*$/, /^[0-9a-tA-T]*$/, /^[0-9a-uA-U]*$/, /^[0-9a-vA-V]*$/, /^[0-9a-wA-W]*$/, /^[0-9a-xA-X]*$/, /^[0-9a-yA-Y]*$/, /^[0-9a-zA-Z]*$/ ]; /* Function: parse Parse a string into a . *base* is optional but, if provided, must be from 2 to 36 inclusive. If *base* is not provided, it will be guessed based on the leading characters of *s* as follows: - "0x" or "0X": *base* = 16 - "0c" or "0C": *base* = 8 - "0b" or "0B": *base* = 2 - else: *base* = 10 If no base is provided, or *base* is 10, the number can be in exponential form. For example, these are all valid: > BigInteger.parse("1e9"); // Same as "1000000000" > BigInteger.parse("1.234*10^3"); // Same as 1234 > BigInteger.parse("56789 * 10 ** -2"); // Same as 567 If any characters fall outside the range defined by the radix, an exception will be thrown. Parameters: s - The string to parse. base - Optional radix (default is to guess based on *s*). Returns: a instance. */ BigInteger.parse = function(s, base) { // Expands a number in exponential form to decimal form. // expandExponential("-13.441*10^5") === "1344100"; // expandExponential("1.12300e-1") === "0.112300"; // expandExponential(1000000000000000000000000000000) === "1000000000000000000000000000000"; function expandExponential(str) { str = str.replace(/\s*[*xX]\s*10\s*(\^|\*\*)\s*/, "e"); return str.replace(/^([+\-])?(\d+)\.?(\d*)[eE]([+\-]?\d+)$/, function(x, s, n, f, c) { c = +c; var l = c < 0; var i = n.length + c; x = (l ? n : f).length; c = ((c = Math.abs(c)) >= x ? c - x + l : 0); var z = (new Array(c + 1)).join("0"); var r = n + f; return (s || "") + (l ? r = z + r : r += z).substr(0, i += l ? z.length : 0) + (i < r.length ? "." + r.substr(i) : ""); }); } s = s.toString(); if (typeof base === "undefined" || +base === 10) { s = expandExponential(s); } var parts = /^([+\-]?)(0[xXcCbB])?([0-9A-Za-z]*)(?:\.\d*)?$/.exec(s); if (parts) { var sign = parts[1] || "+"; var baseSection = parts[2] || ""; var digits = parts[3] || ""; if (typeof base === "undefined") { // Guess base if (baseSection === "0x" || baseSection === "0X") { // Hex base = 16; } else if (baseSection === "0c" || baseSection === "0C") { // Octal base = 8; } else if (baseSection === "0b" || baseSection === "0B") { // Binary base = 2; } else { base = 10; } } else if (base < 2 || base > 36) { throw new Error("Illegal radix " + base + "."); } base = +base; // Check for digits outside the range if (!(BigInteger.radixRegex[base].test(digits))) { throw new Error("Bad digit for radix " + base); } // Strip leading zeros, and convert to array digits = digits.replace(/^0+/, "").split(""); if (digits.length === 0) { return BigInteger.ZERO; } // Get the sign (we know it's not zero) sign = (sign === "-") ? -1 : 1; // Optimize 10 if (base == 10) { var d = []; while (digits.length >= BigInteger.base_log10) { d.push(parseInt(digits.splice(-BigInteger.base_log10).join(''), 10)); } d.push(parseInt(digits.join(''), 10)); return new BigInteger(d, sign); } // Optimize base if (base === BigInteger.base) { return new BigInteger(digits.map(Number).reverse(), sign); } // Do the conversion var d = BigInteger.ZERO; base = BigInteger.small[base]; var small = BigInteger.small; for (var i = 0; i < digits.length; i++) { d = d.multiply(base).add(small[parseInt(digits[i], 36)]); } return new BigInteger(d._d, sign); } else { throw new Error("Invalid BigInteger format: " + s); } }; /* Function: add Add two . Parameters: n - The number to add to *this*. Will be converted to a . Returns: The numbers added together. See Also: , , , */ BigInteger.prototype.add = function(n) { if (this._s === 0) { return BigInteger(n); } n = BigInteger(n); if (n._s === 0) { return this; } if (this._s !== n._s) { n = n.negate(); return this.subtract(n); } var a = this._d; var b = n._d; var al = a.length; var bl = b.length; var sum = new Array(Math.max(al, bl) + 1); var size = Math.min(al, bl); var carry = 0; var digit; for (var i = 0; i < size; i++) { digit = a[i] + b[i] + carry; sum[i] = digit % BigInteger.base; carry = (digit / BigInteger.base) | 0; } if (bl > al) { a = b; al = bl; } for (i = size; carry && i < al; i++) { digit = a[i] + carry; sum[i] = digit % BigInteger.base; carry = (digit / BigInteger.base) | 0; } if (carry) { sum[i] = carry; } for ( ; i < al; i++) { sum[i] = a[i]; } return new BigInteger(sum, this._s); }; /* Function: negate Get the additive inverse of a . Returns: A with the same magnatude, but with the opposite sign. See Also: */ BigInteger.prototype.negate = function() { return new BigInteger(this._d, -this._s); }; /* Function: abs Get the absolute value of a . Returns: A with the same magnatude, but always positive (or zero). See Also: */ BigInteger.prototype.abs = function() { return (this._s < 0) ? this.negate() : this; }; /* Function: subtract Subtract two . Parameters: n - The number to subtract from *this*. Will be converted to a . Returns: The *n* subtracted from *this*. See Also: , , , */ BigInteger.prototype.subtract = function(n) { if (this._s === 0) { return BigInteger(n).negate(); } n = BigInteger(n); if (n._s === 0) { return this; } if (this._s !== n._s) { n = n.negate(); return this.add(n); } var m = this; var t; // negative - negative => -|a| - -|b| => -|a| + |b| => |b| - |a| if (this._s < 0) { t = m; m = new BigInteger(n._d, 1); n = new BigInteger(t._d, 1); } // Both are positive => a - b var sign = m.compareAbs(n); if (sign === 0) { return BigInteger.ZERO; } else if (sign < 0) { // swap m and n t = n; n = m; m = t; } // a > b var a = m._d; var b = n._d; var al = a.length; var bl = b.length; var diff = new Array(al); // al >= bl since a > b var borrow = 0; var i; var digit; for (i = 0; i < bl; i++) { digit = a[i] - borrow - b[i]; if (digit < 0) { digit += BigInteger.base; borrow = 1; } else { borrow = 0; } diff[i] = digit; } for (i = bl; i < al; i++) { digit = a[i] - borrow; if (digit < 0) { digit += BigInteger.base; } else { diff[i++] = digit; break; } diff[i] = digit; } for ( ; i < al; i++) { diff[i] = a[i]; } return new BigInteger(diff, sign); }; (function() { function addOne(n, sign) { var a = n._d; var sum = a.slice(); var carry = true; var i = 0; while (true) { var digit = (a[i] || 0) + 1; sum[i] = digit % BigInteger.base; if (digit <= BigInteger.base - 1) { break; } ++i; } return new BigInteger(sum, sign); } function subtractOne(n, sign) { var a = n._d; var sum = a.slice(); var borrow = true; var i = 0; while (true) { var digit = (a[i] || 0) - 1; if (digit < 0) { sum[i] = digit + BigInteger.base; } else { sum[i] = digit; break; } ++i; } return new BigInteger(sum, sign); } /* Function: next Get the next (add one). Returns: *this* + 1. See Also: , */ BigInteger.prototype.next = function() { switch (this._s) { case 0: return BigInteger.ONE; case -1: return subtractOne(this, -1); // case 1: default: return addOne(this, 1); } }; /* Function: prev Get the previous (subtract one). Returns: *this* - 1. See Also: , */ BigInteger.prototype.prev = function() { switch (this._s) { case 0: return BigInteger.M_ONE; case -1: return addOne(this, -1); // case 1: default: return subtractOne(this, 1); } }; })(); /* Function: compareAbs Compare the absolute value of two . Calling is faster than calling twice, then . Parameters: n - The number to compare to *this*. Will be converted to a . Returns: -1, 0, or +1 if *|this|* is less than, equal to, or greater than *|n|*. See Also: , */ BigInteger.prototype.compareAbs = function(n) { if (this === n) { return 0; } if (!(n instanceof BigInteger)) { if (!isFinite(n)) { return(isNaN(n) ? n : -1); } n = BigInteger(n); } if (this._s === 0) { return (n._s !== 0) ? -1 : 0; } if (n._s === 0) { return 1; } var l = this._d.length; var nl = n._d.length; if (l < nl) { return -1; } else if (l > nl) { return 1; } var a = this._d; var b = n._d; for (var i = l-1; i >= 0; i--) { if (a[i] !== b[i]) { return a[i] < b[i] ? -1 : 1; } } return 0; }; /* Function: compare Compare two . Parameters: n - The number to compare to *this*. Will be converted to a . Returns: -1, 0, or +1 if *this* is less than, equal to, or greater than *n*. See Also: , , , */ BigInteger.prototype.compare = function(n) { if (this === n) { return 0; } n = BigInteger(n); if (this._s === 0) { return -n._s; } if (this._s === n._s) { // both positive or both negative var cmp = this.compareAbs(n); return cmp * this._s; } else { return this._s; } }; /* Function: isUnit Return true iff *this* is either 1 or -1. Returns: true if *this* compares equal to or . See Also: , , , , , , */ BigInteger.prototype.isUnit = function() { return this === BigInteger.ONE || this === BigInteger.M_ONE || (this._d.length === 1 && this._d[0] === 1); }; /* Function: multiply Multiply two . Parameters: n - The number to multiply *this* by. Will be converted to a . Returns: The numbers multiplied together. See Also: , , , */ BigInteger.prototype.multiply = function(n) { // TODO: Consider adding Karatsuba multiplication for large numbers if (this._s === 0) { return BigInteger.ZERO; } n = BigInteger(n); if (n._s === 0) { return BigInteger.ZERO; } if (this.isUnit()) { if (this._s < 0) { return n.negate(); } return n; } if (n.isUnit()) { if (n._s < 0) { return this.negate(); } return this; } if (this === n) { return this.square(); } var r = (this._d.length >= n._d.length); var a = (r ? this : n)._d; // a will be longer than b var b = (r ? n : this)._d; var al = a.length; var bl = b.length; var pl = al + bl; var partial = new Array(pl); var i; for (i = 0; i < pl; i++) { partial[i] = 0; } for (i = 0; i < bl; i++) { var carry = 0; var bi = b[i]; var jlimit = al + i; var digit; for (var j = i; j < jlimit; j++) { digit = partial[j] + bi * a[j - i] + carry; carry = (digit / BigInteger.base) | 0; partial[j] = (digit % BigInteger.base) | 0; } if (carry) { digit = partial[j] + carry; carry = (digit / BigInteger.base) | 0; partial[j] = digit % BigInteger.base; } } return new BigInteger(partial, this._s * n._s); }; // Multiply a BigInteger by a single-digit native number // Assumes that this and n are >= 0 // This is not really intended to be used outside the library itself BigInteger.prototype.multiplySingleDigit = function(n) { if (n === 0 || this._s === 0) { return BigInteger.ZERO; } if (n === 1) { return this; } var digit; if (this._d.length === 1) { digit = this._d[0] * n; if (digit >= BigInteger.base) { return new BigInteger([(digit % BigInteger.base)|0, (digit / BigInteger.base)|0], 1); } return new BigInteger([digit], 1); } if (n === 2) { return this.add(this); } if (this.isUnit()) { return new BigInteger([n], 1); } var a = this._d; var al = a.length; var pl = al + 1; var partial = new Array(pl); for (var i = 0; i < pl; i++) { partial[i] = 0; } var carry = 0; for (var j = 0; j < al; j++) { digit = n * a[j] + carry; carry = (digit / BigInteger.base) | 0; partial[j] = (digit % BigInteger.base) | 0; } if (carry) { digit = carry; carry = (digit / BigInteger.base) | 0; partial[j] = digit % BigInteger.base; } return new BigInteger(partial, 1); }; /* Function: square Multiply a by itself. This is slightly faster than regular multiplication, since it removes the duplicated multiplcations. Returns: > this.multiply(this) See Also: */ BigInteger.prototype.square = function() { // Normally, squaring a 10-digit number would take 100 multiplications. // Of these 10 are unique diagonals, of the remaining 90 (100-10), 45 are repeated. // This procedure saves (N*(N-1))/2 multiplications, (e.g., 45 of 100 multiplies). // Based on code by Gary Darby, Intellitech Systems Inc., www.DelphiForFun.org if (this._s === 0) { return BigInteger.ZERO; } if (this.isUnit()) { return BigInteger.ONE; } var digits = this._d; var length = digits.length; var imult1 = new Array(length + length + 1); var product, carry, k; var i; // Calculate diagonal for (i = 0; i < length; i++) { k = i * 2; product = digits[i] * digits[i]; carry = (product / BigInteger.base) | 0; imult1[k] = product % BigInteger.base; imult1[k + 1] = carry; } // Calculate repeating part for (i = 0; i < length; i++) { carry = 0; k = i * 2 + 1; for (var j = i + 1; j < length; j++, k++) { product = digits[j] * digits[i] * 2 + imult1[k] + carry; carry = (product / BigInteger.base) | 0; imult1[k] = product % BigInteger.base; } k = length + i; var digit = carry + imult1[k]; carry = (digit / BigInteger.base) | 0; imult1[k] = digit % BigInteger.base; imult1[k + 1] += carry; } return new BigInteger(imult1, 1); }; /* Function: quotient Divide two and truncate towards zero. throws an exception if *n* is zero. Parameters: n - The number to divide *this* by. Will be converted to a . Returns: The *this* / *n*, truncated to an integer. See Also: , , , , */ BigInteger.prototype.quotient = function(n) { return this.divRem(n)[0]; }; /* Function: divide Deprecated synonym for . */ BigInteger.prototype.divide = BigInteger.prototype.quotient; /* Function: remainder Calculate the remainder of two . throws an exception if *n* is zero. Parameters: n - The remainder after *this* is divided *this* by *n*. Will be converted to a . Returns: *this* % *n*. See Also: , */ BigInteger.prototype.remainder = function(n) { return this.divRem(n)[1]; }; /* Function: divRem Calculate the integer quotient and remainder of two . throws an exception if *n* is zero. Parameters: n - The number to divide *this* by. Will be converted to a . Returns: A two-element array containing the quotient and the remainder. > a.divRem(b) is exactly equivalent to > [a.quotient(b), a.remainder(b)] except it is faster, because they are calculated at the same time. See Also: , */ BigInteger.prototype.divRem = function(n) { n = BigInteger(n); if (n._s === 0) { throw new Error("Divide by zero"); } if (this._s === 0) { return [BigInteger.ZERO, BigInteger.ZERO]; } if (n._d.length === 1) { return this.divRemSmall(n._s * n._d[0]); } // Test for easy cases -- |n1| <= |n2| switch (this.compareAbs(n)) { case 0: // n1 == n2 return [this._s === n._s ? BigInteger.ONE : BigInteger.M_ONE, BigInteger.ZERO]; case -1: // |n1| < |n2| return [BigInteger.ZERO, this]; } var sign = this._s * n._s; var a = n.abs(); var b_digits = this._d.slice(); var digits = n._d.length; var max = b_digits.length; var quot = []; var guess; var part = new BigInteger([], 1); part._s = 1; while (b_digits.length) { part._d.unshift(b_digits.pop()); part = new BigInteger(part._d, 1); if (part.compareAbs(n) < 0) { quot.push(0); continue; } if (part._s === 0) { guess = 0; } else { var xlen = part._d.length, ylen = a._d.length; var highx = part._d[xlen-1]*BigInteger.base + part._d[xlen-2]; var highy = a._d[ylen-1]*BigInteger.base + a._d[ylen-2]; if (part._d.length > a._d.length) { // The length of part._d can either match a._d length, // or exceed it by one. highx = (highx+1)*BigInteger.base; } guess = Math.ceil(highx/highy); } do { var check = a.multiplySingleDigit(guess); if (check.compareAbs(part) <= 0) { break; } guess--; } while (guess); quot.push(guess); if (!guess) { continue; } var diff = part.subtract(check); part._d = diff._d.slice(); } return [new BigInteger(quot.reverse(), sign), new BigInteger(part._d, this._s)]; }; // Throws an exception if n is outside of (-BigInteger.base, -1] or // [1, BigInteger.base). It's not necessary to call this, since the // other division functions will call it if they are able to. BigInteger.prototype.divRemSmall = function(n) { var r; n = +n; if (n === 0) { throw new Error("Divide by zero"); } var n_s = n < 0 ? -1 : 1; var sign = this._s * n_s; n = Math.abs(n); if (n < 1 || n >= BigInteger.base) { throw new Error("Argument out of range"); } if (this._s === 0) { return [BigInteger.ZERO, BigInteger.ZERO]; } if (n === 1 || n === -1) { return [(sign === 1) ? this.abs() : new BigInteger(this._d, sign), BigInteger.ZERO]; } // 2 <= n < BigInteger.base // divide a single digit by a single digit if (this._d.length === 1) { var q = new BigInteger([(this._d[0] / n) | 0], 1); r = new BigInteger([(this._d[0] % n) | 0], 1); if (sign < 0) { q = q.negate(); } if (this._s < 0) { r = r.negate(); } return [q, r]; } var digits = this._d.slice(); var quot = new Array(digits.length); var part = 0; var diff = 0; var i = 0; var guess; while (digits.length) { part = part * BigInteger.base + digits[digits.length - 1]; if (part < n) { quot[i++] = 0; digits.pop(); diff = BigInteger.base * diff + part; continue; } if (part === 0) { guess = 0; } else { guess = (part / n) | 0; } var check = n * guess; diff = part - check; quot[i++] = guess; if (!guess) { digits.pop(); continue; } digits.pop(); part = diff; } r = new BigInteger([diff], 1); if (this._s < 0) { r = r.negate(); } return [new BigInteger(quot.reverse(), sign), r]; }; /* Function: isEven Return true iff *this* is divisible by two. Note that is even. Returns: true if *this* is even, false otherwise. See Also: */ BigInteger.prototype.isEven = function() { var digits = this._d; return this._s === 0 || digits.length === 0 || (digits[0] % 2) === 0; }; /* Function: isOdd Return true iff *this* is not divisible by two. Returns: true if *this* is odd, false otherwise. See Also: */ BigInteger.prototype.isOdd = function() { return !this.isEven(); }; /* Function: sign Get the sign of a . Returns: * -1 if *this* < 0 * 0 if *this* == 0 * +1 if *this* > 0 See Also: , , , , */ BigInteger.prototype.sign = function() { return this._s; }; /* Function: isPositive Return true iff *this* > 0. Returns: true if *this*.compare() == 1. See Also: , , , , , */ BigInteger.prototype.isPositive = function() { return this._s > 0; }; /* Function: isNegative Return true iff *this* < 0. Returns: true if *this*.compare() == -1. See Also: , , , , , */ BigInteger.prototype.isNegative = function() { return this._s < 0; }; /* Function: isZero Return true iff *this* == 0. Returns: true if *this*.compare() == 0. See Also: , , , , */ BigInteger.prototype.isZero = function() { return this._s === 0; }; /* Function: exp10 Multiply a by a power of 10. This is equivalent to, but faster than > if (n >= 0) { > return this.multiply(BigInteger("1e" + n)); > } > else { // n <= 0 > return this.quotient(BigInteger("1e" + -n)); > } Parameters: n - The power of 10 to multiply *this* by. *n* is converted to a javascipt number and must be no greater than (0x7FFFFFFF), or an exception will be thrown. Returns: *this* * (10 ** *n*), truncated to an integer if necessary. See Also: , */ BigInteger.prototype.exp10 = function(n) { n = +n; if (n === 0) { return this; } if (Math.abs(n) > Number(BigInteger.MAX_EXP)) { throw new Error("exponent too large in BigInteger.exp10"); } if (n > 0) { var k = new BigInteger(this._d.slice(), this._s); for (; n >= BigInteger.base_log10; n -= BigInteger.base_log10) { k._d.unshift(0); } if (n == 0) return k; k._s = 1; k = k.multiplySingleDigit(Math.pow(10, n)); return (this._s < 0 ? k.negate() : k); } else if (-n >= this._d.length*BigInteger.base_log10) { return BigInteger.ZERO; } else { var k = new BigInteger(this._d.slice(), this._s); for (n = -n; n >= BigInteger.base_log10; n -= BigInteger.base_log10) { k._d.shift(); } return (n == 0) ? k : k.divRemSmall(Math.pow(10, n))[0]; } }; /* Function: pow Raise a to a power. In this implementation, 0**0 is 1. Parameters: n - The exponent to raise *this* by. *n* must be no greater than (0x7FFFFFFF), or an exception will be thrown. Returns: *this* raised to the *nth* power. See Also: */ BigInteger.prototype.pow = function(n) { if (this.isUnit()) { if (this._s > 0) { return this; } else { return BigInteger(n).isOdd() ? this : this.negate(); } } n = BigInteger(n); if (n._s === 0) { return BigInteger.ONE; } else if (n._s < 0) { if (this._s === 0) { throw new Error("Divide by zero"); } else { return BigInteger.ZERO; } } if (this._s === 0) { return BigInteger.ZERO; } if (n.isUnit()) { return this; } if (n.compareAbs(BigInteger.MAX_EXP) > 0) { throw new Error("exponent too large in BigInteger.pow"); } var x = this; var aux = BigInteger.ONE; var two = BigInteger.small[2]; while (n.isPositive()) { if (n.isOdd()) { aux = aux.multiply(x); if (n.isUnit()) { return aux; } } x = x.square(); n = n.quotient(two); } return aux; }; /* Function: modPow Raise a to a power (mod m). Because it is reduced by a modulus, is not limited by like . Parameters: exponent - The exponent to raise *this* by. Must be positive. modulus - The modulus. Returns: *this* ^ *exponent* (mod *modulus*). See Also: , */ BigInteger.prototype.modPow = function(exponent, modulus) { var result = BigInteger.ONE; var base = this; while (exponent.isPositive()) { if (exponent.isOdd()) { result = result.multiply(base).remainder(modulus); } exponent = exponent.quotient(BigInteger.small[2]); if (exponent.isPositive()) { base = base.square().remainder(modulus); } } return result; }; /* Function: log Get the natural logarithm of a as a native JavaScript number. This is equivalent to > Math.log(this.toJSValue()) but handles values outside of the native number range. Returns: log( *this* ) See Also: */ BigInteger.prototype.log = function() { switch (this._s) { case 0: return -Infinity; case -1: return NaN; default: // Fall through. } var l = this._d.length; if (l*BigInteger.base_log10 < 30) { return Math.log(this.valueOf()); } var N = Math.ceil(30/BigInteger.base_log10); var firstNdigits = this._d.slice(l - N); return Math.log((new BigInteger(firstNdigits, 1)).valueOf()) + (l - N) * Math.log(BigInteger.base); }; /* Function: valueOf Convert a to a native JavaScript integer. This is called automatically by JavaScipt to convert a to a native value. Returns: > parseInt(this.toString(), 10) See Also: , */ BigInteger.prototype.valueOf = function() { return parseInt(this.toString(), 10); }; /* Function: toJSValue Convert a to a native JavaScript integer. This is the same as valueOf, but more explicitly named. Returns: > parseInt(this.toString(), 10) See Also: , */ BigInteger.prototype.toJSValue = function() { return parseInt(this.toString(), 10); }; // Constant: MAX_EXP // The largest exponent allowed in and (0x7FFFFFFF or 2147483647). BigInteger.MAX_EXP = BigInteger(0x7FFFFFFF); (function() { function makeUnary(fn) { return function(a) { return fn.call(BigInteger(a)); }; } function makeBinary(fn) { return function(a, b) { return fn.call(BigInteger(a), BigInteger(b)); }; } function makeTrinary(fn) { return function(a, b, c) { return fn.call(BigInteger(a), BigInteger(b), BigInteger(c)); }; } (function() { var i, fn; var unary = "toJSValue,isEven,isOdd,sign,isZero,isNegative,abs,isUnit,square,negate,isPositive,toString,next,prev,log".split(","); var binary = "compare,remainder,divRem,subtract,add,quotient,divide,multiply,pow,compareAbs".split(","); var trinary = ["modPow"]; for (i = 0; i < unary.length; i++) { fn = unary[i]; BigInteger[fn] = makeUnary(BigInteger.prototype[fn]); } for (i = 0; i < binary.length; i++) { fn = binary[i]; BigInteger[fn] = makeBinary(BigInteger.prototype[fn]); } for (i = 0; i < trinary.length; i++) { fn = trinary[i]; BigInteger[fn] = makeTrinary(BigInteger.prototype[fn]); } BigInteger.exp10 = function(x, n) { return BigInteger(x).exp10(n); }; })(); })(); if (typeof exports !== 'undefined') { exports.BigInteger = BigInteger; }