Pair Sums

Given an array, we define its value to be the value obtained by following these instructions:

- Write down all pairs of numbers from this array.
- Compute the product of each pair.
- Find the sum of all the products.

For example, for a given array, for a given array [7, 2, -1, 2],

Pairs
$$(7, 2), (7, -1), (7, 2), (2, -1), (2, 2), (-1, 2)$$

Products of the pairs14, -7, 14, -2, 4, -2
Sum of the products 14 + (-7) + 14 + (-2) + 4 + (-2) = **21**
Note that $(7, 2)$ is listed twice, one for each occurrence of **2**.

Given an array of integers, find the largest *value* of any of its nonempty subarrays.

Note: A subarray is a contiguous subsequence of the array.

Complete the function <u>largestValue</u> which takes an array and returns an integer denoting the largest value of any of the array's nonempty subarrays.

Input Format

The first line contains a single integer n, denoting the number of integers in array A. The second line contains n space-separated integers A_i denoting the elements of array A.

Constraints

- $3 \le n \le 5 \cdot 10^5$
- $-10^3 \le A_i \le 10^3$

Subtasks

- $n \leq 5000$ for 20% of the points.
- $n \le 2 \cdot 10^5$ for 70% of the points.

Output Format

Print a single line containing a single integer denoting the largest *value* of any of the array's nonempty subarrays.

Sample Input 0

Sample Output 0

41

Explanation 0

In this case, we have A=[-3,7,-2,3,5,-2]. The largest-valued subarray turns out to be [7,-2,3,5] with value $(7\cdot-2)+(7\cdot3)+(7\cdot5)+(-2\cdot3)+(-2\cdot5)+(3\cdot5)=41$.

Sample Input 1

```
10
5 7 -5 6 3 9 -8 2 -1 10
```

Sample Output 1

200