Jugnu has recently been appointed as the sports captain. The headmaster asked her to form a team for an upcoming table tennis tournament, subject to a few constraints.

Each student of the school is assigned an integer denoting his/her skill level. The headmaster requests Jugnu to form an indivisible team of size x. The team is indivisible if it satisfies the following conditions.

- To make the team strong, each member of the team must have a skill level in the range $[a, b]$.
- The size of the team must be x.
- Let g_{1} and g_{2} be the skill levels of any two distinct players in the team. Then g_{1} should not divide g_{2}. This is necessary to avoid clashes.

Can you help Jugnu form an indivisible team? Assume that for every g, Jugnu can always find a student with skill level g.

Input Format

The first line contains a single integer t, the number of test cases. The descriptions of t test cases follow.
Each test case consists of a single line containing three space-separated integers a, b and x.

Constraints

- $1 \leq t \leq 50$
- $1 \leq a<b \leq 10^{4}$
- $2 \leq x \leq b-a+1$

Output Format

For each test case, print a single line containing x space-separated integers denoting the skill levels of the team members, or " -1 " (without quotes) if it's impossible to build an indivisible team.

Make sure output of each testcase is followed by a new line.
You may output the elements in any order. Any valid solution will be accepted.

Sample Input 0

Sample Output 0

Explanation 0

Test case 1: The list of skill levels is $[2,3]$. Notice that neither 2 divides 3 nor 3 divides 2 . Test case 2: There are multiple valid answers, e.g., $[3,4,5],[3,5,7],[3,7,8],[5,8,9]$, etc. Test case 3: It is not possible to form an indivisible team.

