Designer PDF Viewer

When a contiguous block of text is selected in a PDF viewer, the selection is highlighted with a blue rectangle. In this PDF viewer, each word is highlighted independently. For example:

Highlighted Text
 abc def ghi

There is a list of 26 character heights aligned by index to their letters. For example, 'a' is at index 0 and ' z ' is at index 25 . There will also be a string. Using the letter heights given, determine the area of the rectangle highlight in $m m^{2}$ assuming all letters are 1 mm wide.

Example

$h=[1,3,1,3,1,4,1,3,2,5,5,5,5,1,1,5,5,1,5,2,5,5,5,5,5,5] w o r d={ }^{\prime}$ torn $^{\prime}$
The heights are $t=2, o=1, r=1$ and $n=1$. The tallest letter is 2 high and there are 4 letters. The hightlighted area will be $2 * 4=8 \mathrm{~mm}^{2}$ so the answer is 8 .

Function Description

Complete the designerPdfViewer function in the editor below.
designerPdfViewer has the following parameter(s):

- int $h[26]:$ the heights of each letter
- string word: a string

Returns

- int: the size of the highlighted area

Input Format

The first line contains 26 space-separated integers describing the respective heights of each consecutive lowercase English letter, ascii[a-z].
The second line contains a single word consisting of lowercase English alphabetic letters.

Constraints

- $1 \leq h[?] \leq 7$, where ? is an English lowercase letter.
- word contains no more than 10 letters.

Sample Input 0

```
1 3 1 1 3 1.llllllllllllllllllllllllll
abc
```


Sample Output 0

Explanation 0

We are highlighting the word abc:
Letter heights are $a=1, b=3$ and $c=1$. The tallest letter, b , is $3 m m$ high. The selection area for this word is $3 \cdot 1 \mathrm{~mm} \cdot 3 \mathrm{~mm}=9 \mathrm{~mm}^{2}$.

Note: Recall that the width of each character is 1 mm .

Sample Input 1

```
1 3 1.llllllllllllllllllllllllllll
    zaba
```


Sample Output 1

```
    28
```


Explanation 1

The tallest letter in $z a b a$ is z at 7 mm . The selection area for this word is $4 \times 1 \mathrm{~mm} \times 7 \mathrm{~mm}=28 \mathrm{~mm}^{2}$.

